京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		Matplotlib是Python中最流行的数据可视化库之一,它提供了许多绘图工具和函数,可以创建各种类型的图形。其中包括网格线(Grid)功能,可以在图形上添加水平和垂直线条以辅助读取数据。但默认情况下,网格线会覆盖数据点和线条,这可能会使图像难以阅读。本文将介绍如何使用Matplotlib让grid网格线处于图像底部。
Matplotlib图形中的每个元素都有一个zorder属性,该属性控制元素在图形中的层数。具有更高zorder值的元素位于具有较低zorder值的元素之上。默认情况下,网格线的zorder值为1,因此它们位于其他元素的顶部。要将它们移动到底部,可以将其zorder属性设置为0或更低的值。例如:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True, zorder=0) plt.show()
在此示例中,我们创建一个基本的折线图并启用网格线。ax.grid(True)命令将在图形中显示网格线,默认情况下zorder值为1。我们在此命令中将zorder属性设置为0,以便网格线位于其他元素之下。最后,使用plt.show()函数显示图形。
另一种将网格线移动到底部的方法是使用set_axisbelow函数。该函数可用于设置轴线(包括网格线)在图像上的层数。默认情况下,轴线位于所有其他元素的顶部。以下是一个示例:
import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([1, 2, 3], [4, 5, 6]) ax.grid(True) ax.set_axisbelow(True) plt.show()
在此示例中,我们创建了与前面相同的折线图,并在轴对象上启用了网格线。然后,我们使用ax.set_axisbelow(True)命令将轴线置于其他元素之下。最后,使用plt.show()函数显示图形。
我们还可以使用Matplotlib的rcParams全局设置将所有图形的网格线移动到底部。rcParams是一个字典对象,它存储了Matplotlib的默认参数和配置选项。使用rcParams,可以在不影响代码中的单个图形的情况下更改Matplotlib的全局行为。以下是一个示例:
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
fig, ax = plt.subplots()
ax.plot([1, 2, 3], [4, 5, 6])
ax.grid(True)
plt.show()
在此示例中,我们使用plt.rcParams['axes.axisbelow'] = True命令将axes.axisbelow参数设置为True。这告诉Matplotlib将所有轴线置于其他元素之下,包括网格线。然后我们创建了一个基本的折线图并启用了网格线。最后,使用plt.show()函数显示图形。
在Matplotlib中,有多种方法可以将网格线移动到图像底部。我们可以设置网格线的zorder属性、使用set_axisbelow函数或通过rcParams全局设置更改Matplotlib的默认行为。无论哪种方法,它们都能提高图形的可读性,并使数据更易于解读。
你是否渴望进一步提升数据可视化的能力,让数据展示更加专业、高效呢?现在,有一门绝佳的课程能满足你的需求 ——Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)。
学习入口:https://edu.cda.cn/goods/show/3842?targetId=6751&preview=0
这门课程完全免费,且学习有效期长期有效。由 CDA 数据分析研究院的张彦存老师精心打造,他拥有丰富的实战经验,能将复杂知识通俗易懂地传授给你。课程深入讲解 matplotlib、seaborn、pyecharts 三大主流 Python 可视化工具,带你从基础绘图到高级定制,还涵盖多元图表类型和各类展示场景。无论是数据分析新手想要入门,还是有基础的从业者希望提升技能,亦或是对数据可视化感兴趣的爱好者,都能从这门课程中收获满满。点击课程链接,开启你的数据可视化进阶之旅,让数据可视化成为你职场晋升和探索数据世界的有力武器!
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关 ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28