京公网安备 11010802034615号
经营许可证编号:京B2-20210330
扩张卷积,也被称为空洞卷积,是一种在深度学习中常用的卷积操作,可以有效地增加模型感受野和步幅,同时减少参数数量。
在PyTorch中,扩张卷积是通过使用nn.Conv2d()函数来实现的。该函数有四个必填参数:in_channels,out_channels,kernel_size和dilation。其中,in_channels表示输入特征图的通道数,out_channels表示输出特征图的通道数,kernel_size表示卷积核的大小,而dilation则表示卷积核内部的扩张率,即卷积核元素之间的跨度。下面将详细介绍如何在PyTorch中使用扩张卷积。
1.定义扩张卷积层
import torch.nn as nn
# 定义一个输入通道数为3,输出通道数为16,卷积核大小为3x3,扩张率为2的扩张卷积层
conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, dilation=2)
在这里,我们定义了一个名为“conv”的扩张卷积层,它具有3个输入通道,16个输出通道,3x3的卷积核大小和2的扩张率。
2.传递输入数据
import torch
# 随机生成一张3x256x256的图像
input_data = torch.randn(1, 3, 256, 256)
# 将输入数据传递给扩张卷积层
output = conv(input_data)
在这里,我们使用torch.randn()函数生成了一张随机的3通道图像,并将其传递给扩张卷积层。输出变量“output”包含了经过扩张卷积层处理后的特征图。
3.观察输出特征图
print(output.size())
输出:torch.Size([1, 16, 252, 252]) 在这里,我们打印了输出特征图的大小。由于卷积核的扩张率为2,因此输出特征图实际上比输入特征图小了4个像素(因为每个维度都有2个像素被“限制”在了边界之外)。输出特征图的深度为16,与我们在定义扩张卷积层时指定的输出通道数相同。
总结: PyTorch中的扩张卷积是通过使用nn.Conv2d()函数来实现的。它具有四个必填参数:in_channels,out_channels,kernel_size和dilation。其中,dilation表示卷积核内部的扩张率。扩张卷积可以有效地增加模型感受野和步幅,同时减少参数数量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22