京公网安备 11010802034615号
经营许可证编号:京B2-20210330
PyTorch是一个流行的深度学习框架,它提供了许多工具来帮助研究人员和开发人员构建和训练神经网络。在PyTorch中,我们可以使用两种不同的文件扩展名将模型保存到磁盘上:.pkl和.pth。这两个扩展名都用于保存PyTorch模型,并且它们之间有一些重要的区别。
首先,让我们看一下.pkl文件。.pkl是Python标准库中Pickle模块生成的二进制格式,用于序列化Python对象。例如,我们可以使用.pkl文件将NumPy数组或Pandas数据帧保存到磁盘上。在PyTorch中,我们可以使用.pkl文件将模型序列化并保存到磁盘上。但是,.pkl文件与.pth文件相比有一些限制。
.pkl文件只能由Python解释器读取,因此如果我们需要在其他编程语言中使用已保存的模型,则必须先将其转换为其他格式。此外,.pkl文件的大小通常比.pth文件大,因为它们包含了额外的元数据和Python对象信息。因此,如果我们需要将模型在不同的计算机或环境之间共享,我们可能更愿意使用.pth文件。
但是,.pth文件也有一些限制。.pth文件是PyTorch特定的格式,可以直接在PyTorch中加载,并且可以使用pytorch内置API进行操作。由于.pth文件只包含有关模型参数的信息,因此它们通常比.pkl文件更小。此外,.pth文件不依赖于Python版本,因此我们可以在不同版本的Python和PyTorch之间共享.pth文件而无需任何转换。
另一个重要的区别是.pth文件只能存储模型参数的值,而.pkl文件可以存储包括模型在内的完整Python对象。因此,如果我们需要在代码中重新实例化整个模型,包括其架构和状态等信息,则最好使用.pkl文件。但是,如果我们仅需要加载已训练的权重,则使用.pth文件更方便,因为它们更小且易于处理。
总体而言,.pth文件和.pkl文件都可用于保存PyTorch模型,并且它们各自有其优点和缺点。通常情况下,如果我们只需要共享已训练的权重,则.pth文件是更好的选择,因为它们更小且易于处理。如果我们需要在代码中重新实例化整个模型,则最好使用.pkl文件。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29