
Apache Spark是一个分布式计算框架,设计初衷是为了处理大规模数据集的计算。随着越来越多的企业开始采用Spark进行数据处理和分析,其性能和可靠性变得越来越重要。在这种情况下,底层通信的效率和鲁棒性成为了至关重要的因素。在Spark 2.0中,Spark团队做出了一个重大决策:底层通信从Akka转向Netty。这篇文章将探讨这个决定的背景、原因和影响。
在Spark 1.x版本中,Spark使用Akka作为其底层通信框架。Akka是一种基于Scala语言的消息传递框架,它可以轻松地实现分布式系统中的Actor模型,提供了高度并发的支持。但是,随着Spark的广泛应用,Akka的一些缺点也逐渐显露出来。具体来说,Akka存在两个主要的问题:
针对这些问题,Spark团队考虑替换Akka,寻找更高效、更稳定的通信框架。
Spark团队在选择新的底层通信框架时,考虑了以下因素:
首先,Spark需要一个高效的通信框架,能够快速地传输大量的数据。在大规模的数据集上,通信的开销往往比计算本身还要高昂,因此通信性能的优化对于Spark的性能至关重要。
Netty是一个高性能的网络通信框架,专门设计用于构建高性能、高可靠的网络应用程序。与Akka相比,Netty采用更高效的I/O模型和线程管理方式,可以更好地利用现代计算机系统的多核心和多线程资源,在高并发的场景下保持更好的性能表现。
其次,Spark需要一个健壮、可靠的通信框架,能够保证消息正确性和可靠性。在分布式系统中,由于各种网络异常和故障,消息的传输过程中可能会遇到各种问题。因此,通信框架必须具备足够的健壮性,能够自适应地应对不同的异常情况,并尽可能地保证消息的正确性和可靠性。
Netty提供了诸如心跳检测、连接超时控制、断线重连等多种机制,能够有效地处理各种网络异常和故障,保证通信的可靠性和健壮性。
最后,Spark需要一个活跃的社区和生态环境,能够为其提供良好的支持和反馈。通信框架作为Spark的底层组件之一,必须具备足够的社区支持和生
态环境,能够与Spark社区紧密配合,相互促进。在选择新的通信框架时,必须考虑到其生态环境和社区支持情况,以确保其能够长期稳定地运行,并为Spark提供长期的支持。
Netty作为一个成熟的开源项目,拥有庞大的用户和开发者社区,具备广泛的应用场景和丰富的功能库。与Akka相比,Netty的生态环境更加成熟、稳定,能够为Spark提供更好的支持和反馈。
综上所述,Spark团队最终决定将底层通信从Akka转向Netty,以满足Spark日益增长的性能和可靠性需求。
底层通信框架的改变对于Spark整体的影响十分深远,主要体现在以下几个方面:
由于Netty采用更高效的I/O模型和线程管理方式,通信性能得到了明显的提升。根据Spark官方测试数据显示,使用Netty作为底层通信框架可以使Spark的性能提升10%-30%,特别是在大规模数据处理场景下表现更加优秀。
Netty提供了多种机制来保证消息的正确性和可靠性,如心跳检测、连接超时控制、断线重连等,可以有效地避免消息丢失或延迟等问题,提高系统的健壮性和可靠性。
由于底层通信框架的改变,Spark 2.0需要进行一定的兼容性调整,以适应新的通信框架。具体地,某些Spark API中与Akka相关的部分需要进行修改或替换,以适应Netty的API设计。
Netty相对于Akka而言,具备更加成熟、稳定的生态环境和社区支持,这也为Spark提供了更好的支持和发展空间。同时,一些与Netty相关的生态组件也开始出现,如基于Netty的分布式RPC框架gRPC等,进一步提升了Spark生态环境的质量和稳定性。
总体来说,底层通信框架的转换为Spark带来了明显的性能和可靠性提升,同时也需要进行一定的兼容性调整和生态环境升级,为Spark未来的发展奠定了更加坚实的基础。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18