
Apache Spark是一个分布式计算框架,设计初衷是为了处理大规模数据集的计算。随着越来越多的企业开始采用Spark进行数据处理和分析,其性能和可靠性变得越来越重要。在这种情况下,底层通信的效率和鲁棒性成为了至关重要的因素。在Spark 2.0中,Spark团队做出了一个重大决策:底层通信从Akka转向Netty。这篇文章将探讨这个决定的背景、原因和影响。
在Spark 1.x版本中,Spark使用Akka作为其底层通信框架。Akka是一种基于Scala语言的消息传递框架,它可以轻松地实现分布式系统中的Actor模型,提供了高度并发的支持。但是,随着Spark的广泛应用,Akka的一些缺点也逐渐显露出来。具体来说,Akka存在两个主要的问题:
针对这些问题,Spark团队考虑替换Akka,寻找更高效、更稳定的通信框架。
Spark团队在选择新的底层通信框架时,考虑了以下因素:
首先,Spark需要一个高效的通信框架,能够快速地传输大量的数据。在大规模的数据集上,通信的开销往往比计算本身还要高昂,因此通信性能的优化对于Spark的性能至关重要。
Netty是一个高性能的网络通信框架,专门设计用于构建高性能、高可靠的网络应用程序。与Akka相比,Netty采用更高效的I/O模型和线程管理方式,可以更好地利用现代计算机系统的多核心和多线程资源,在高并发的场景下保持更好的性能表现。
其次,Spark需要一个健壮、可靠的通信框架,能够保证消息正确性和可靠性。在分布式系统中,由于各种网络异常和故障,消息的传输过程中可能会遇到各种问题。因此,通信框架必须具备足够的健壮性,能够自适应地应对不同的异常情况,并尽可能地保证消息的正确性和可靠性。
Netty提供了诸如心跳检测、连接超时控制、断线重连等多种机制,能够有效地处理各种网络异常和故障,保证通信的可靠性和健壮性。
最后,Spark需要一个活跃的社区和生态环境,能够为其提供良好的支持和反馈。通信框架作为Spark的底层组件之一,必须具备足够的社区支持和生
态环境,能够与Spark社区紧密配合,相互促进。在选择新的通信框架时,必须考虑到其生态环境和社区支持情况,以确保其能够长期稳定地运行,并为Spark提供长期的支持。
Netty作为一个成熟的开源项目,拥有庞大的用户和开发者社区,具备广泛的应用场景和丰富的功能库。与Akka相比,Netty的生态环境更加成熟、稳定,能够为Spark提供更好的支持和反馈。
综上所述,Spark团队最终决定将底层通信从Akka转向Netty,以满足Spark日益增长的性能和可靠性需求。
底层通信框架的改变对于Spark整体的影响十分深远,主要体现在以下几个方面:
由于Netty采用更高效的I/O模型和线程管理方式,通信性能得到了明显的提升。根据Spark官方测试数据显示,使用Netty作为底层通信框架可以使Spark的性能提升10%-30%,特别是在大规模数据处理场景下表现更加优秀。
Netty提供了多种机制来保证消息的正确性和可靠性,如心跳检测、连接超时控制、断线重连等,可以有效地避免消息丢失或延迟等问题,提高系统的健壮性和可靠性。
由于底层通信框架的改变,Spark 2.0需要进行一定的兼容性调整,以适应新的通信框架。具体地,某些Spark API中与Akka相关的部分需要进行修改或替换,以适应Netty的API设计。
Netty相对于Akka而言,具备更加成熟、稳定的生态环境和社区支持,这也为Spark提供了更好的支持和发展空间。同时,一些与Netty相关的生态组件也开始出现,如基于Netty的分布式RPC框架gRPC等,进一步提升了Spark生态环境的质量和稳定性。
总体来说,底层通信框架的转换为Spark带来了明显的性能和可靠性提升,同时也需要进行一定的兼容性调整和生态环境升级,为Spark未来的发展奠定了更加坚实的基础。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10