京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Apache Spark是一个分布式计算框架,设计初衷是为了处理大规模数据集的计算。随着越来越多的企业开始采用Spark进行数据处理和分析,其性能和可靠性变得越来越重要。在这种情况下,底层通信的效率和鲁棒性成为了至关重要的因素。在Spark 2.0中,Spark团队做出了一个重大决策:底层通信从Akka转向Netty。这篇文章将探讨这个决定的背景、原因和影响。
在Spark 1.x版本中,Spark使用Akka作为其底层通信框架。Akka是一种基于Scala语言的消息传递框架,它可以轻松地实现分布式系统中的Actor模型,提供了高度并发的支持。但是,随着Spark的广泛应用,Akka的一些缺点也逐渐显露出来。具体来说,Akka存在两个主要的问题:
针对这些问题,Spark团队考虑替换Akka,寻找更高效、更稳定的通信框架。
Spark团队在选择新的底层通信框架时,考虑了以下因素:
首先,Spark需要一个高效的通信框架,能够快速地传输大量的数据。在大规模的数据集上,通信的开销往往比计算本身还要高昂,因此通信性能的优化对于Spark的性能至关重要。
Netty是一个高性能的网络通信框架,专门设计用于构建高性能、高可靠的网络应用程序。与Akka相比,Netty采用更高效的I/O模型和线程管理方式,可以更好地利用现代计算机系统的多核心和多线程资源,在高并发的场景下保持更好的性能表现。
其次,Spark需要一个健壮、可靠的通信框架,能够保证消息正确性和可靠性。在分布式系统中,由于各种网络异常和故障,消息的传输过程中可能会遇到各种问题。因此,通信框架必须具备足够的健壮性,能够自适应地应对不同的异常情况,并尽可能地保证消息的正确性和可靠性。
Netty提供了诸如心跳检测、连接超时控制、断线重连等多种机制,能够有效地处理各种网络异常和故障,保证通信的可靠性和健壮性。
最后,Spark需要一个活跃的社区和生态环境,能够为其提供良好的支持和反馈。通信框架作为Spark的底层组件之一,必须具备足够的社区支持和生
态环境,能够与Spark社区紧密配合,相互促进。在选择新的通信框架时,必须考虑到其生态环境和社区支持情况,以确保其能够长期稳定地运行,并为Spark提供长期的支持。
Netty作为一个成熟的开源项目,拥有庞大的用户和开发者社区,具备广泛的应用场景和丰富的功能库。与Akka相比,Netty的生态环境更加成熟、稳定,能够为Spark提供更好的支持和反馈。
综上所述,Spark团队最终决定将底层通信从Akka转向Netty,以满足Spark日益增长的性能和可靠性需求。
底层通信框架的改变对于Spark整体的影响十分深远,主要体现在以下几个方面:
由于Netty采用更高效的I/O模型和线程管理方式,通信性能得到了明显的提升。根据Spark官方测试数据显示,使用Netty作为底层通信框架可以使Spark的性能提升10%-30%,特别是在大规模数据处理场景下表现更加优秀。
Netty提供了多种机制来保证消息的正确性和可靠性,如心跳检测、连接超时控制、断线重连等,可以有效地避免消息丢失或延迟等问题,提高系统的健壮性和可靠性。
由于底层通信框架的改变,Spark 2.0需要进行一定的兼容性调整,以适应新的通信框架。具体地,某些Spark API中与Akka相关的部分需要进行修改或替换,以适应Netty的API设计。
Netty相对于Akka而言,具备更加成熟、稳定的生态环境和社区支持,这也为Spark提供了更好的支持和发展空间。同时,一些与Netty相关的生态组件也开始出现,如基于Netty的分布式RPC框架gRPC等,进一步提升了Spark生态环境的质量和稳定性。
总体来说,底层通信框架的转换为Spark带来了明显的性能和可靠性提升,同时也需要进行一定的兼容性调整和生态环境升级,为Spark未来的发展奠定了更加坚实的基础。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19