京公网安备 11010802034615号
经营许可证编号:京B2-20210330
神经网络是一种模拟神经系统的计算模型,其核心是通过学习从输入到输出之间的映射关系来解决各种问题。神经网络中的能量函数是一种用于描述神经元状态的数学函数,它可以帮助神经网络在训练过程中找到最优的权重和偏差参数,从而提高模型的性能和准确性。
一、什么是能量函数?
在物理学中,能量是指物体所具有的使其能够进行工作的能力。在神经网络中,我们也可以将神经元的状态看作是一种能量状态,该状态可以用能量函数来描述。能量函数是一个从神经元状态到实数值的映射,它衡量了神经元当前状态的稳定性和可靠性。
二、为什么需要能量函数?
能量函数对于神经网络的学习和优化过程非常重要。在训练过程中,神经网络需要不断调整权重和偏差参数,以最小化损失函数(Loss Function)的值。而这个过程可以通过最小化能量函数的值来实现。
具体来说,如果能量函数的值越小,就说明神经元状态越稳定,反之则说明神经元状态不稳定或存在噪声干扰。因此,我们可以将能量函数作为目标函数,通过梯度下降等优化方法来更新神经元的权重和偏差参数,以达到最小化能量函数的目的。
三、能量函数的定义方式
能量函数的定义方式有多种,其中最常见的是受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)和深度置信网络(Deep Belief Network, DBN)中使用的能量函数。
受限玻尔兹曼机是一种无向图模型,在模型中每个节点都是随机变量,并且相邻节点之间存在连接。RBM的能量函数可以表示为:
$$E(v,h)=-sum_{i=1}^{m}sum_{j=1}^{n}v_i w_{ij} h_j-sum_{i=1}^{m}a_iv_i-sum_{j=1}^{n}b_jh_j$$
其中,$v_i$表示可见层的第$i$个节点状态,$h_j$表示隐藏层的第$j$个节点状态,$a_i$和$b_j$分别表示可见层和隐藏层的偏置项,$w_{ij}$表示连接节点$v_i$和$h_j$之间的权重。该能量函数的值越小,表示RBM的状态越稳定。
深度置信网络是一种由多层受限玻尔兹曼机组成的前馈神经网络。DBN的能量函数可以表示为:
$$E(v,h^{(1)},cdots,h^{(L)})=-sum_{i=1}^{m}sum_{j=1}^{n}v_i w_{ij}^{(1)}h_j^{(1)}-sum_{l=2}^{L}sum_{i=1}^{n_{l-1}}sum_{j=1}^{n_l}h_i^{(l-1)}w_{ij}^{(l)}h_j^{(l)}-sum_{i=1}^{m}a_iv_i-sum_{l=1}^{L}sum_{j=1}^{n_l}b_j^{(l)}h_j^{(l)}$$
其中,$v_i$表示第一层的可见层节点状态,$h_j^{(l)}$表示第$l$层的第$j$个隐藏
层节点状态,$a_i$和$b_j^{(l)}$分别表示第一层和第$l$层的偏置项,$w_{ij}^{(l)}$表示连接第$l-1$层的第$i$个隐藏层节点和第$l$层的第$j$个隐藏层节点之间的权重。该能量函数的值越小,表示DBN的状态越稳定。
四、能量函数的应用
除了在神经网络的训练和优化过程中使用外,能量函数还可以应用于图像分割、聚类、降噪等领域。例如,在图像分割任务中,我们可以将能量函数定义为每个像素点是否属于前景或背景的概率,并通过最小化能量函数的值来实现准确的图像分割。
另外,能量函数也被广泛应用于生成对抗网络(Generative Adversarial Network, GAN)中。GAN是一种基于博弈论的生成模型,其中包含生成器和判别器两个部分,而能量函数则被用来衡量生成器生成的样本与真实数据之间的差距,从而指导生成器的训练过程。
总之,能量函数是神经网络中非常重要的数学工具,它可以帮助神经网络在训练和优化过程中寻找最优解,并且在其他领域中也有广泛的应用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11