
作者:派森酱
来源:Python技术
文 | ssw
来源:Python 技术「ID: pythonall」
我负责十多个地灾项目,经常需要了解设备的离线情况。公司网站按项目提供了excel表格,看起来较乱,这是下载的数据:
从原始表格里,不太容易看出这些信息:
这是用脚本,将数据排序分组配色后的效果(脚本和数据文件见文末)
先将“最后上线时间”一列设置为行索引,使用pd.to_datetime转换为datetime类型,再排序
import pandas as pdfrom datetime import datetime,timedeltadf2 = pd.read_excel("C:/sf3/sf3/excel/1170_04-28.xlsx",sheet_name="邵阳")#将“最后上线时间”一列设置为行索引new = df2.set_index(pd.to_datetime(df2['最后上线时间']))#新列重命名new.index.name = 'last'#按时间排序new.sort_values('最后上线时间', ascending=True,inplace=True)
输出:
分组可以从“设备别名”这列获取,新增一列“设备类型”
#新增一列“设备类型”new['设备类型'] = new['设备别名'].str.split('0').str[0].str.split(' ').str[0]new2 = new.groupby(['设备类型','最后上线时间','设备别名','连接状态','所属监测点'],as_index=False)new3 = new2.all()
输出:
now = datetime.now().strftime('%Y-%m-%d')sevenDaysAgo = (datetime.now() + timedelta(days=-7)).strftime('%Y-%m-%d')new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)')
输出:
new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)').highlight_between(left='普适型声光报警器',right='普适型声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型声光报警器',right='声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型GNSS基准站',right='普适型GNSS基准站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS监测站',right='普适型GNSS监测站',subset=['设备类型'],props='background:#a1eafb')
输出:
.highlight_between(left='在线',right='在线',subset=['连接状态'],props='background:#f9ed69')
输出:
文件下载地址:http://ssw.fit/file/
import pandas as pdfrom datetime import datetime,timedeltadf2 = pd.read_excel("C:/sf3/sf3/excel/1170_07-28.xlsx",sheet_name="邵阳")new = df2.set_index(pd.to_datetime(df2['最后上线时间']))new.index.name = 'last'new.sort_values('最后上线时间', ascending=True,inplace=True)new['设备类型'] = new['设备别名'].str.split('0').str[0].str.split(' ').str[0]new2 = new.groupby(['设备类型','最后上线时间','设备别名','连接状态','所属监测点'],as_index=False)new3 = new2.all()now = datetime.now().strftime('%Y-%m-%d')sevenDaysAgo = (datetime.now() + timedelta(days=-7)).strftime('%Y-%m-%d')new3.style.highlight_between(left=sevenDaysAgo,right=now,subset=['最后上线时间'],props='font-weight:bold;color:rgb(64, 158, 255)').highlight_between(left='普适型声光报警器',right='普适型声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型声光报警器',right='声光报警器',subset=['设备类型'],props='background:#c7f5fe').highlight_between(left='普适型GNSS基准站',right='普适型GNSS基准站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS基站',right='普适型GNSS基站',subset=['设备类型'],props='background:#ffa5a5').highlight_between(left='普适型GNSS监测站',right='普适型GNSS监测站',subset=['设备类型'],props='background:#a1eafb').highlight_between(left='普适型裂缝计',right='普适型裂缝计',subset=['设备类型'],props='background:#a6e3e9').highlight_between(left='普适型雨量计',right='普适型雨量计',subset=['设备类型'],props='background:#71c9ce').highlight_between(left='在线',right='在线',subset=['连接状态'],props='background:#f9ed69').highlight_between(left='普适型变形桩',right='普适型变形桩',subset=['设备类型'],props='background:#cbf1f5')
项目经理要我整理某个项目的离线表给他,修改下脚本里的sheet_name即可。是不是省事呢?
如果你觉得本文对你有帮助,还请点个赞支持一下~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29