京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编来介绍一下如何用Python来操作Excel文件,当中需要用到的模块叫做openpyxl,其中我们会涉及到一些基本常规的操作,例如有
小编默认大家已经都安装好了openpyxl模块了,要是还没有安装的话,可以通过pip命令行,代码如下
pip install openpyxl
我们首先来导入Excel数据集,代码如下
# 导入模块from openpyxl import Workbook, load_workbook# 导入Excel数据集wb = load_workbook(r"grades.xlsx")# 得到正在运行的工作表sheet = wb.active# 工作表的名称叫做print(sheet)
output
我们通过传入单元格的位置来打印其中的数值,代码如下
print(sheet["A1"].value)print(sheet["A2"].value)print(sheet["B3"].value)
output
NameTestMale
我们还可以尝试来改变某个单元格的数值,代码如下
sheet["A1"] = "Dylan"# 保存wb.save(r"grades.xlsx")
在保存过之后,我们来看一下结果如何,如下图所示
我们尝试在现有的Excel当中添加一个工作表,代码如下
# 添加一个新的工作表wb.create_sheet("Class B")# 返回以列表形式带有工作表名称print(wb.sheetnames)
output
['Class A', 'Class B']
我们尝试新建一个工作簿,并且插入若干条数据,代码如下
# 创建一个新的工作簿new_wb = Workbook()ws = new_wb.active# 重命名工作表的名称ws.title = "Test1"# 插入数据到新建的工作表中ws.append(["This","is","a","test"])new_wb.save("test.xlsx")
我们来看一下最后出来的结果,如下图所示
我们尝试来多插入几条数据,代码如下
# 插入更多的数据ws.append(["This","Is","Another","Test"])ws.append(["And","Yet","Another","Test"])ws.append(["End"])# 保存new_wb.save("test.xlsx")
如果是想插入某一行的话,调用的则是insert_rows()方法,具体代码如下
# 前面的步骤一样,导入工作簿和数据ws.insert_rows(1)wb.save("test.xlsx")
出来的结果如下图所示
同理,如果是想要去删除某一行的数据的话,调用的则是delete_rows()方法,具体代码如下
ws.delete_rows(1)# 保存wb.save("test.xlsx")
出来的结果如下图所示
我们来看一下该如何插入列和删除列,插入列用到的方式是insert_cols(),代码如下
# 新插入一列ws.insert_cols(2)
结果如下
而删除列的方法是delete_cols(),
ws.delete_cols(1,2)
我们还可以进行一系列的数据统计分析,首先我们先把需要用到的数据放入至Excel当中去,
sales_data = { "苹果": {"北京": 5000, "上海": 7000, "深圳": 6000, "香港": 10000}, "华为": {"北京": 8000, "上海": 4000, "深圳": 3000, "香港": 9000}, "小米": {"北京": 6000, "上海": 9000, "深圳": 5000, "香港": 6000}, "vivo": {"北京": 3000, "上海": 5000, "深圳": 4000, "香港": 7000} }
小编随意生成了一点数据,并且将其放置到Excel当中去,代码如下
# 创建一个新的工作簿sales_wb = Workbook()ws = sales_wb.active# 重命名工作表的名称ws.title = "Sales"# 创建列名column_names = ["Product Name"] + list(sales_data["苹果"].keys())ws.append(column_names)# 将一系列的数值都放置到工作表当中去for product in sales_data: sales = list(sales_data[product].values()) ws.append([product] + sales)sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们来指定某一列,并且求出其平均值,代码如下
ws['B6'] = '=AVERAGE(B2:B5)'sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们为每一座城市的销售额都来做一个求和的计算,我们写一个for循环来遍历每一列,将每一列当中的数据做一个求和,代码如下
# 再添加新的一行的名称ws['A' + str(ws.max_row + 1)] = "Total Sales"# 遍历再求和for col in range(2, len(sales_data["苹果"]) + 2): char = get_column_letter(col) ws[char + '6'] = f"=SUM({char + '2'}:{char + '5'})"
我们来看一下出来的结果,如下图所示
我们也可以来更改字体的颜色,使得更加美观一些,代码如下
for col in range(1,ws.max_column+1): ws[get_column_letter(col) + '1'].font = Font('Arial', bold=True, size=13, color='00000080') sales_wb.save("sales_data.xlsx")
我们来看一下美化过之后的结果,如下图所示
最后的最后,我们来绘制一张柱状图,来看一下不同的产品在每一个城市的销售数据如何,横坐标对应的产品类目,而纵坐标对应的则是销售数据,另外我们根据不同的城市会用不用的颜色来标注出来,代码如下
from openpyxl.chart import BarChart, Reference# 新建一个柱状图实例barchart = BarChart()# 确定数据的范围data = Reference(ws, min_col=ws.min_column+1, max_col=ws.max_column, min_row=ws.min_row, max_row=ws.max_row-1)categories = Reference(ws, min_col=ws.min_column, max_col=ws.min_column, min_row=ws.min_row+1, max_row=ws.max_row-1)# 添加数据以及类目barchart.add_data(data, titles_from_data=True)barchart.set_categories(categories)# 绘制的数据放在哪个位置ws.add_chart(barchart, "G1")# 添加标题barchart.title = '每座城市的产品销售数据'# 图表的类型barchart.style = 2sales_wb.save("sales_data.xlsx")
我们来看一下最后出来的结果,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07