
作者:俊欣
来源:关于数据分析与可视化
今天小编来介绍一下如何用Python来操作Excel文件,当中需要用到的模块叫做openpyxl,其中我们会涉及到一些基本常规的操作,例如有
小编默认大家已经都安装好了openpyxl模块了,要是还没有安装的话,可以通过pip命令行,代码如下
pip install openpyxl
我们首先来导入Excel数据集,代码如下
# 导入模块from openpyxl import Workbook, load_workbook# 导入Excel数据集wb = load_workbook(r"grades.xlsx")# 得到正在运行的工作表sheet = wb.active# 工作表的名称叫做print(sheet)
output
我们通过传入单元格的位置来打印其中的数值,代码如下
print(sheet["A1"].value)print(sheet["A2"].value)print(sheet["B3"].value)
output
NameTestMale
我们还可以尝试来改变某个单元格的数值,代码如下
sheet["A1"] = "Dylan"# 保存wb.save(r"grades.xlsx")
在保存过之后,我们来看一下结果如何,如下图所示
我们尝试在现有的Excel当中添加一个工作表,代码如下
# 添加一个新的工作表wb.create_sheet("Class B")# 返回以列表形式带有工作表名称print(wb.sheetnames)
output
['Class A', 'Class B']
我们尝试新建一个工作簿,并且插入若干条数据,代码如下
# 创建一个新的工作簿new_wb = Workbook()ws = new_wb.active# 重命名工作表的名称ws.title = "Test1"# 插入数据到新建的工作表中ws.append(["This","is","a","test"])new_wb.save("test.xlsx")
我们来看一下最后出来的结果,如下图所示
我们尝试来多插入几条数据,代码如下
# 插入更多的数据ws.append(["This","Is","Another","Test"])ws.append(["And","Yet","Another","Test"])ws.append(["End"])# 保存new_wb.save("test.xlsx")
如果是想插入某一行的话,调用的则是insert_rows()方法,具体代码如下
# 前面的步骤一样,导入工作簿和数据ws.insert_rows(1)wb.save("test.xlsx")
出来的结果如下图所示
同理,如果是想要去删除某一行的数据的话,调用的则是delete_rows()方法,具体代码如下
ws.delete_rows(1)# 保存wb.save("test.xlsx")
出来的结果如下图所示
我们来看一下该如何插入列和删除列,插入列用到的方式是insert_cols(),代码如下
# 新插入一列ws.insert_cols(2)
结果如下
而删除列的方法是delete_cols(),
ws.delete_cols(1,2)
我们还可以进行一系列的数据统计分析,首先我们先把需要用到的数据放入至Excel当中去,
sales_data = { "苹果": {"北京": 5000, "上海": 7000, "深圳": 6000, "香港": 10000}, "华为": {"北京": 8000, "上海": 4000, "深圳": 3000, "香港": 9000}, "小米": {"北京": 6000, "上海": 9000, "深圳": 5000, "香港": 6000}, "vivo": {"北京": 3000, "上海": 5000, "深圳": 4000, "香港": 7000} }
小编随意生成了一点数据,并且将其放置到Excel当中去,代码如下
# 创建一个新的工作簿sales_wb = Workbook()ws = sales_wb.active# 重命名工作表的名称ws.title = "Sales"# 创建列名column_names = ["Product Name"] + list(sales_data["苹果"].keys())ws.append(column_names)# 将一系列的数值都放置到工作表当中去for product in sales_data: sales = list(sales_data[product].values()) ws.append([product] + sales)sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们来指定某一列,并且求出其平均值,代码如下
ws['B6'] = '=AVERAGE(B2:B5)'sales_wb.save("sales_data.xlsx")
我们来看一下出来的结果,如下图所示
我们为每一座城市的销售额都来做一个求和的计算,我们写一个for循环来遍历每一列,将每一列当中的数据做一个求和,代码如下
# 再添加新的一行的名称ws['A' + str(ws.max_row + 1)] = "Total Sales"# 遍历再求和for col in range(2, len(sales_data["苹果"]) + 2): char = get_column_letter(col) ws[char + '6'] = f"=SUM({char + '2'}:{char + '5'})"
我们来看一下出来的结果,如下图所示
我们也可以来更改字体的颜色,使得更加美观一些,代码如下
for col in range(1,ws.max_column+1): ws[get_column_letter(col) + '1'].font = Font('Arial', bold=True, size=13, color='00000080') sales_wb.save("sales_data.xlsx")
我们来看一下美化过之后的结果,如下图所示
最后的最后,我们来绘制一张柱状图,来看一下不同的产品在每一个城市的销售数据如何,横坐标对应的产品类目,而纵坐标对应的则是销售数据,另外我们根据不同的城市会用不用的颜色来标注出来,代码如下
from openpyxl.chart import BarChart, Reference# 新建一个柱状图实例barchart = BarChart()# 确定数据的范围data = Reference(ws, min_col=ws.min_column+1, max_col=ws.max_column, min_row=ws.min_row, max_row=ws.max_row-1)categories = Reference(ws, min_col=ws.min_column, max_col=ws.min_column, min_row=ws.min_row+1, max_row=ws.max_row-1)# 添加数据以及类目barchart.add_data(data, titles_from_data=True)barchart.set_categories(categories)# 绘制的数据放在哪个位置ws.add_chart(barchart, "G1")# 添加标题barchart.title = '每座城市的产品销售数据'# 图表的类型barchart.style = 2sales_wb.save("sales_data.xlsx")
我们来看一下最后出来的结果,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23