
根据中国教育部的统计,2022年预计中国高校毕业生将达到1076万人,比2021年增长167万人,首次突破千万大关!
在经历了疫情,经济增长速度都有所放缓,这很大程度上影响了中国经济的整体情况。
在对未来市场环境预测不利的前提下,很多企业为了生存,采用“断尾”的方式求生,即采用裁员的方式来消减成本压力,缩减校招名额!
除此之外,社会对毕业生的学历要求越来越高。在应届生求职数量远大于招聘数量的情况下,企业会抬高门槛,比如抬高学历要求、技能要求,去筛选合适人选。
智联招聘近期发布的应届大学毕业生就业情况报告,截至五月份男生签约率 22%,女生10%。着实让人吃惊,许多网友表示“史上最难就业季被刷新”!
(图源:智联招聘)
虽然每一年都在喊“最难就业季”,但是今年在疫情反复和经济形势险峻的双重冲击下,创下历史新高的高校毕业生就业人数,把大学生就业这件事推向了最复杂的局面。毕业即失业,或许将会大规模发生。
作为2022年应届毕业生的你,是否感到了焦虑和恐慌?如何在这样的形势中有所突破,找到适合自己且优质的就业机会?
大数据作为云计算之后又一项颠覆性的技术革命,来势汹涌,甚至开启了一个全新的时代——大数据时代。无论学术界、商界还是政府,数据都成为成功决策的基础,广泛应用在各大商业领域。
2022年数据分析的重要性进一步加强,数据分析师持续增长,在行业有利的环境下得到国家政策的支持。数据分析企业、数据分析人才的不断增加驱动数据分析行业蓬勃发展。
据统计我国数据分析岗位需求规模达到300万,且未来5年都将以30%-40%的速度增长,需求总量将达到2000万人左右。
(图片来源于网络)
而之所以造成如此大缺口的主要原因,是因为我国大数据处于飞速发展的状态,然而高等教育专业滞后,目前大数据专业人才不足200万,需求1:10。这就导致了很多企业无法完成数字化转型,他们愿意花费更多的薪资去招揽数据分析人才。
数据中蕴藏着巨大的商业价值,从初创公司到大厂纷纷成立数据分析部门,为公司的运营、决策提供指导与帮助。到现在,数据分析已经成为未来必不可少的工作技能之一,一些看似与数据分析无关的岗位,企业在招聘时也要求具备数据分析能力,比如市场、财务、运营、人力等等。
数据分析给予了人们彻底颠覆“营销”的期盼,大部分人都希望能够成为数据分析师,承接大数据时代带来的好处。
无论是即将毕业的学子,还是征战职场多年的人士;无论你是迷途不知归路的追梦人,还是事业遭遇瓶颈的彷徨者。想要进入数据分析行业,那么你就得尽早做好自己的人生规划。
随着各行各业都在进行数字化转型,数据方面的人才也成为各家企业招聘的重点对象,不同数据类型的岗位提供薪资待遇又是如何呢?未来的发展前景与钱途又是怎么样的?今天带着大家一起了解下。
从图中可以看到对数据方面人才需求最旺盛的仍然是北京,上海排在第二,与此同时,杭州在这方面的需求上面已经超过了广州,位列第四,同时在前十名当中成都、南京以及武汉与西安都纷纷上榜。
(图片来源:关于数据分析与可视化)
薪资方面,我们可以发现“数据挖掘工程师”这个岗位,薪资一般比较容易达到20K-40K之间的区间。
(图片来源:关于数据分析与可视化)
不同领域对数据人才需求也有所不同,从图中可以看到对数据分析人才需求最旺盛的几个行业分别是:互联网、金融、零售、咨询、电信等等领域。
(图片来源:关于数据分析与可视化)
从事数据分析岗位,选择不同的企业差别会很大,这也与钱有直接的关系。总体来说:
如果你是刚刚毕业的大学生,在一线互联网大厂从事数据分析工作的话,薪资可以达到20k以上。但是一线互联网大厂的要求也是相对较高,一般需要本科以上学历,统计学、计算机相关的专业。国企大概在15k上下,而传统行业相对会低一些,往往在10k左右。
普通互联网公司和传统行业肯定没法与一线互联网大厂相比,但是如果是一些知名的传统行业也是很不错的选择,比如移动、联通、银行等等,在里面工作几年后,再去互联网公司,薪资待遇也会很不错。
数据分析的职业发展是一个不规则的线性成长,而且,职业寿命长。学会数据分析职场收益长久,越老越吃香,受其他外部业务影响相对较小,职位相对稳定。
CDA数据分析师助力就业季,推出数据分析就业班,市场空间大、发展前景好,薪资水平高。线上线下相结合,灵活上课。无论是0基础就业,还是转行,都可以满足你的需求。
根据往年学员数据统计,明确有就业需求学员的就业率超过90%,CDA就业班是为解决当下企业招人难、学员就业难的问题所研发的精品课程。课程以数据分析理论与实践案例结合的方式讲授,内容覆盖了国内企业招聘数据分析师岗位所需的技能,学员经过三个月系统全面的脱产学习,达到企业用人标准,快速在大数据时代找准工作定位,抓住大时代的大机遇!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01