
作者:俊欣
来源:关于数据分析与可视化
在Python当中用于绘制图表的模块,相信大家用的最多的便是matplotlib和seabron,除此之外还有一些用于动态交互的例如Plotly模块和Pyecharts模块,今天小编再为大家来推荐两个用于制作可视化大屏的库,分别叫做hvPlot以及Panel,在本篇教程当中,小编依次会为大家分享
我们首先导入一些要用到的模块以及用pandas来读取数据集,代码如下
# To handle data import numpy as np import pandas as pd # To make visualizations import hvplot.pandas import panel as pn; pn.extension() from panel.template import DarkTheme
用pandas绘制出来的图表默认都是以matplotlib模块为后端,因为不具备交互性,如下图所示
sales = pd.read_csv('games_sales.csv')
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales');
output
代码中的kind参数对应的是图表的类型,X参数代表的是X轴上面的所要要用到的数据,同理,我们还指定了标题、图表的颜色等等参数,那么要是我们希望pandas在绘制图表的时候是以hvPlot为后端,需要添加如下的代码
pd.options.plotting.backend = 'holoviews'
我们同样来绘制如上所示的图表,代码如下
sales.plot(kind='line', x='Year', y='Units sold(in millions)', color='orange', grid=True, title='Pokémon Game Sales')
output
通过最右侧的工具栏,我们可以将绘制出来的图表保存、放大/缩小、移动等一系列操作。我们也可以同时将若干种图表结合在一起,绘制在同一张图上面
salesplot = sales.plot(kind='line', x='Year', y='Units sold(in millions)',
color='orange', grid=True, title='Pokémon Game Sales',
hover=False) *
sales.plot(kind='scatter', x='Year', y='Units sold(in millions)',
color='#c70000', hover_cols='Game')
salesplot
output
我们分别绘制了两张图表,散点图以及折线图,通过*将两者有效地结合到了一块儿。
在上一期小编写过的教程
【干货原创】介绍一个Python模块,Seaborn绘制的图表也能实现动态交互
里面提到用ipywidgets模块来制作并且生成组件配合着可视化图表来使用,这次我们用Panel模块也来生成一个类似的组件,代码如下
pok_types = list(df.type_1.unique()) pok_type = pn.widgets.Select(name='Type', options=pok_types) pok_type
output
我们结合该组件来绘制图表,代码如下
viz0 = data_pipeline[['pokedex_number', 'name',
'total_points']].hvplot(kind='table',title='Pokémons',
width=400, height=400)
viz0
output
我们可以通过当中的参数kind来调整要绘制的图表的类型,width以及height参数来调整图表的大小,title参数来调整图表的标题,我们来绘制一张散点图,代码如下
viz1 = data_pipeline.hvplot(x='weight_kg', y='height_m', by='type_2', kind='scatter',
hover_cols=['name', 'type_1', 'type_2'],
width=600, height=400,grid=True,
title='Relationship between Weight (kg) and Height (m), by Type' )
viz1
output
另外我们也可以同样来绘制一张柱状图,代码如下
data_damage = data_pipeline.iloc[:, -18:].mean().rename('Damage')
viz2 = data_damage.hvplot(kind='bar',c='Damage',
title='正在思考要取什么标题会比较好......',
rot=30, shared_axes=False,
colorbar=True, colormap='RdYlGn_r',
)
viz2
output
接下来我们将上面绘制的所有图表,都放置在一张数据大屏当中显示,代码如下
template = pn.template.FastListTemplate(theme=DarkTheme,
title = '数据面板',
sidebar=[
pn.pane.Markdown('# 关于这个项目'),
pn.pane.Markdown('#### 这个项目的数据来源是[Kaggle](https://www.kaggle.com/datasets/mariotormo/complete-pokemon-dataset-updated-090420) and on [Wikipedia](https://en.wikipedia.org/wiki/Pok%C3%A9mon_(video_game_series)#Reception) about Pokémons to explore different types of visualizations using HoloViz tools: [Panel](https://panel.holoviz.org/) [hvPlot](https://hvplot.holoviz.org/)'),
pn.pane.JPG('图片的路径.jpg', sizing_mode='scale_both'),
pn.pane.Markdown('[图片的来源](https://unsplash.com/photos/dip9IIwUK6w)'),
pn.pane.Markdown('## Filter by Type'),
pok_type
],
main=[pn.Row(
pn.Column(viz0.panel(width=600, height=400, margin=(0,20))),
pn.Column(pn.Row(viz1.panel(width=700, height=250, margin=(0,20))),
pn.Column(viz2.panel(width=700, height=250), margin=(0,20))),
),
pn.Row(salesplot.opts(width=1400, height=200))
],
accent_base_color='#d78929',
header_background='#d78929',
sidebar_footer='<br><br><a href=".......">GitHub链接</a>',
main_max_width='100%' )
template.servable();
template.show()
output
Launching server at http://localhost:63968 <bokeh.server.server.Server at 0x1bd811e82b0>
我们按照上述的链接来浏览器中打开,数据大屏面板就可以做好了,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27