京公网安备 11010802034615号
经营许可证编号:京B2-20210330
什么是大数据金融
什么是大数据金融
大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。
02大数据金融的内容
基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。目前,大数据服务平台的运营模式可以分为以阿里小额信贷为代表的平台模式和京东、苏宁为代表的供应链金融模式。大数据的4V特点: Volume (大量)、 Velocity (高速)、 Variety (多样)、 Veracity (精确)。
大数据金融模式广泛应用于电商平台,以对平台用户和供应商进行贷款融资,从中获得贷款利息以及流畅的供应链所带来的企业收益。随着大数据金融的完善,企业将更加注重用户个人的体验,进行个性化金融产品的设计。未来,大数据金融企业之间的竞争将存在于对数据的采集范围、数据真伪性的鉴别以及数据分析和个性化服务等方面。
03大数据金融的运营模式
大数据金融分为平台金融和供应链金融两大模式。
平台金融模式中,是平台企业对其长期以来积累的大数据通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析。譬如现在众所周知的阿里金融,以及未来可能进入这一领域的电信运营商等。
供应链金融模式,是核心龙头企业依托自身的产业优势地位,通过其对上下游企业现金流、进销存、合同订单等信息的掌控,依托自己资金平台或者合作金融机构对上下游企业提供金融服务的模式,譬如京东金融平台、华胜天成供应链金融模式等。
特点:数据量巨大、数据的多样性、数据的价值性
优势:大数据金融有着传统金融难以比拟的优势。互联网的迅速发展不仅极大扩展着企业拥有的数据量,也使得企业更能够贴近客户,了解客户需求,实现非标准化的精准服务,增加客户黏性;企业通过自己的征信系统,实现信用管理的创新,有效降低坏账率,扩大服务范围,增加对小微企业的融资比例,降低了运营成本和服务成本,可以实现规模经济。
大数据能够通过海量数据的核查和评定,增加风险的可控行和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。支持业务的精细化管理。虽然银行有很多支付流水数据,但是各部门不交叉,数据无法整合,大数据金融的模式促使银行开始对沉积的数据进行有效利用。大数据将推动金融机构创新品牌和服务,做到精细化服务,对客户进行个性定制,利用数据开发新的预测和分析模型,实现对客户消费模式的分析以提高客户的转化率。大数据必将给金融企业带来更多更新的基于数据的业务和内部管理优化机会。
04大数据金融的特征
1.网络化的呈现。在大数据金融时代,大量的金融产品和服务通过网络来展现,包括固定网络和移动网络。其中,移动网络将会逐渐成为大数据金融服务的一个主要通道。随着法律、监管政策的完善,随着大数据技术的不断发展,将会有更多、更加丰富的金融产品和服务通过网络呈现。支付结算、网贷、P2P、众筹融资、资产管理、现金管理、产品销售、金融咨询等都将主要通过网络实现,金融实体店将大量减少,其功能也将逐渐转型。
2.基于大数据的风险管理理念和工具。在大数据金融时代,风险管理理念和工具也将调整。例如,在风险管理理念上,财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。交易行为的真实性、信用的可信度通过数据的呈现方式将会更加重要,风险定价方式将会出现革命性变化。对客户的评价将是全方位、立体的、活生生的,而不再是一个抽象的、模糊的客户构图。基于数据挖掘的客户识别和分类将成为风险管理的主要手段,动态、实时的监测而非事后的回顾式评价将成为风险管理的常态性内容。
3.信息不对称性大大降低。在大数据金融时代,金融产品和服务的消费者和提供者之间信息不对称程度大大降低。对某项金融产品(服务)的支持和评价,消费者可实时获知该信息。
4.高效率性。大数据金融无疑是高效率的。许多流程和动作都是在线上发起和完成,有些动作是自动实现。在合适的时间,合适的地点,把合适的产品以合适的方式提供给合适的消费者。同时,强大的数据分析能力可以将金融业务做到极高的效率,交易成本也会大幅降低。
5.金融企业服务边界扩大。首先,就单个金融企业而言,其最合适经营规模扩大了。由于效率提升,其经营成本必随之降低。金融企业的成本曲线形态也会发生变化。长期平均成本曲线,其底部会更快来临,也会更平坦更宽。其次,基于大数据技术,金融从业人员个体服务对象会更多。换言之,单个金融企业从业人员会有减少的趋势,或至少其市场人员有降低的趋势。
6.产品的可控性、可受性。通过网络化呈现的金融产品,对消费者而言,是可控、可受的。可控,是指在消费者看来,其风险是可控的。可受,是指在消费者看来,首先其收益(或成本)是可接受的;其次产品的流动性也是可接受的;最后消费者基于金融市场的数据信息,其产品也是可接受的。
7.普惠金融。大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。例如,极小金额的理财服务、存款服务。支付结算服务等普通老百姓都可享受到。甚至极小金额的融资服务也会普遍发展起来。传统金融想也不敢想的金融深化在大数据金融时代完全实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26