
作者:小伍哥
来源:小伍哥聊风控
对于文本处理,tf-idf的使用已经非常普遍,在sklearn等知名的机器学习开源库中都提供了直接的调用,然而很多人并没有搞清楚TF-IDF是怎么算出来的,也就无法对这种计算方法进行针对性的改进了。我之前也是稀里糊涂的,在各种开源库随手可得的Python年代“调包需谨慎”,不能让自己成为只会调包的人,我们内功还是需要修炼的,计算之前,我们先了解下tf-idf的基本定义。
tf(term frequency:指的是某一个给定的词语在该文件中出现的次数,这个数字通常会被归一化(一般是词频除以该文件总词数),以防止它偏向长的文件。
idf (inverse document frequency):反应了一个词在所有文本(整个文档)中出现的频率,如果一个词在很多的文本中出现,那么它的idf值应该低,而反过来如果一个词在比较少的文本中出现,那么它的idf值应该高。
一个词语的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
下面我们看看大多数情况下,tf-idf 的定义:
TF的计算公式如下:
其中
是在某一文本中词条w出现的次数,
是该文本总词条数。
IDF的计算公式:
其中Y是语料库的文档总数,Yw是包含词条w的文档数,分母加一是为了避免
未出现在任何文档中从而导致分母为
的情况。
TF-IDF的就是将TF和IDF相乘
从以上计算公式便可以看出,某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。
现在我们来看看,tf-idf到底怎么计算的,和我们手算的能不能对上。
在sklearn中,tf与上述定义一致,我们看看idf在sklearn中的定义,可以看到,分子分母都加了1,做了更多的平滑处理
smooth_idf=False
idf(t) = log [ n / df(t) ] + 1
smooth_idf=True
idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1
下面我们手把手的计算出TF-IDF的值,使用的是sklearn官方的案例:
corpus = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?'] #初始化 vector = TfidfVectorizer() #tf-idf计算 tfidf = vector.fit_transform(corpus) #直接打印,得到的是一个稀疏矩阵,第1位表示文档编号,第二位代表词的编号 print(tfidf) (0, 1) 0.46979138557992045 (0, 2) 0.5802858236844359 (0, 6) 0.38408524091481483 (0, 3) 0.38408524091481483 (0, 8) 0.38408524091481483 (1, 5) 0.5386476208856763 (1, 1) 0.6876235979836938 (1, 6) 0.281088674033753 (1, 3) 0.281088674033753 (1, 8) 0.281088674033753 (2, 4) 0.511848512707169 (2, 7) 0.511848512707169 (2, 0) 0.511848512707169 (2, 6) 0.267103787642168 (2, 3) 0.267103787642168 (2, 8) 0.267103787642168 (3, 1) 0.46979138557992045 (3, 2) 0.5802858236844359 (3, 6) 0.38408524091481483 (3, 3) 0.38408524091481483 (3, 8) 0.38408524091481483
通过vocabulary_属性,可以查看每个词对应的数字编号,就可以与上面的矩阵对应起来了
vector.vocabulary_ {'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
通过上面的字典和矩阵可以知道,第一个文档'This is the first document'的tf-idf 值如下
(0, 1) 0.46979138557992045 document (0, 2) 0.58028582368443590 first (0, 6) 0.38408524091481483 the (0, 3) 0.38408524091481483 is (0, 8) 0.38408524091481483 this
document first the is this
0.46979 0.58028 0.384085 0.38408 0.384085
我们手动计算来验证下:
tf 计算
对于第一个文档,有5个不同的词,每个词的词频为:tf= 1/5
idf计算
document:log((1+N)/(1+N(document)))+1= log((1+4)/(1+3))+1 = 1.2231435 first :log((1+N)/(1+N(first)))+1 = log((1+4)/(1+2))+1 = 1.5108256 the :log((1+N)/(1+N(the )))+1 = log((1+4)/(1+4))+1 = 1.0 is :log((1+N)/(1+N(is )))+1 = log((1+4)/(1+4))+1 = 1.0 this :log((1+N)/(1+N(this)))+1 = log((1+4)/(1+4))+1 = 1.0
tf-idf计算
1.2231435*1/5 = 0.24462869 1.5108256*1/5 = 0.30216512 1.0*1/5 = 0.2 1.0*1/5 = 0.2 1.0*1/5 = 0.2
得到我们手工计算的tf-idf值
和我们sklearn计算的
答案并不对,哪里出了问题呢?我们仔细看看原来的代码,因为sklearn做了归一化,我们按同样的方法进行归一化计算如下:
计算每个tf-idf 的平方根
(0.24462869**2 + 0.30216512**2 + 0.2**2 + 0.2**2 + 0.2**2)**0.5 = 0.5207177313
对每个值除以平方根
0.24462869/0.5207177313244965 = 0.4697913577434035 0.30216512/0.5207177313244965 = 0.5802858282382923 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055 0.20000000/0.5207177313244965 = 0.3840852499708055
这样一看,就和我们的sklearn计算的一致了,到此,我们也算是学会了计算tf-idf值了,加深了对该方法的理解,以便于后期的算法调用,心里有货,才不惧未知。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18