作者:Python进阶者
来源:Python爬虫与数据挖掘
大家好,我是吴老板。今天给大家分享一个可将Mongodb数据库里边的文件转换为表格文件的库,这个库是我自己开发的,有问题可以随时咨询我。
Mongo2file库是一个 Mongodb 数据库转换为表格文件的库。
在我的日常工作中经常和 mongodb 打交道,而从 mongodb 数据库中批量导出数据为其他格式则成为了刚需。
如果您跟我一样每次导出数据时都需要重新编写或到处寻找 脚本代码 的话,这个库可能会对您产生帮助。
mongo2file 依赖于 PyArrow 库。它是 C++ Arrow 的 Python 版本实现。
PyArrow 目前与 Python 3.7、3.8、3.9 和 3.10 兼容。
仓库地址: https://github.com/apache/arrow
如果您在 Windows 上遇到任何的导入问题或错误,您可能需要安装 Visual Studio 2015。
警告: PyArrow 目前只支持到 win64 位 ( Python 64bit ) 操作系统。
其次,除了常见的 csv、excel、以及 json 文件格式之外, mongo2file 还支持导出 pickle、feather、parquet 的二进制压缩文件。
pickle、feather、parquet 是 Python 序列化数据的一种文件格式, 它把数据转成二进制进行存储。从而大大减少读取的时间。
pip install mongo2file
快速开始
import os from mongo2file import MongoEngine
M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_'),
collection=os.getenv('MONGO_COLLECTION', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_excel() assert "successfully" in result_ def to_pickle(): result_ = M.to_pickle() assert "successfully" in result_ def to_feather(): result_ = M.to_feather() assert "successfully" in result_ def to_parquet(): result_ = M.to_parquet() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类指定了 mongodb 表名称时、将对数据表 (mongodb集合) 进行导出操作。
其类方法参数包括:
import os from mongo2file import MongoEngine """
作用于 MongoEngine 类未指定表名称时
""" M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_json() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类只指定了 mongodb 库名称时、将对数据库下所有集合进行导出操作。
对于 mongodb 的全表查询、条件查询、聚合操作、以及索引操作(当数据达到一定量级时建议) 并不是直接影响 数据导出的最大因素。
因为 mongodb 的查询一般而言都非常快速,主要的瓶颈在于读取 数据库 之后将数据转换为大列表存入 表格文件时所耗费的时间。
_这是一件非常可怕的事情_。
当没有多线程(当然这里的多线程并不是对同一文件进行并行操作,文件写入往往是线程不安全的)、 数据表查询语句无优化时,并且当数据达到一定量级时(比如 100w 行),单表单线程表现出来的效果真是让人窒息。
在 mongo2file 在进行大数据量导出时表现的并没有多么优秀。导致的主要原因可能是:
mongo2file 表现的不如人意时,我做出了一下改进:
Reference API
MongoEngine
MongoEngine( host='localhost', port=27017, username=None, password=None, database='测试库', collection='测试表_200000' )
to_csv(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_excel(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效 :param mode: 导出模式, 枚举类型、sheet 或 xlsx, 当 is_block 为 True 时生效 :param ignore_error: 是否忽略错误、数据表中存在非序列化类型时使用、这将一定程度上影响程序的性能
to_json(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_pickle(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_feather(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_parquet(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
大家好,我是吴老板。以上就是今天要分享的全部内容了,总的来说,Mongo2file库是一个可以将 Mongodb 数据库转换为表格文件的库,不仅支持导出csv、excel、以及 json 文件格式, 还支持导出 pickle、feather、parquet 的二进制压缩文件。欢迎大家积极尝试,在使用过程中有遇到任何问题,欢迎随时联系我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03