京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
大家好,我是吴老板。今天给大家分享一个可将Mongodb数据库里边的文件转换为表格文件的库,这个库是我自己开发的,有问题可以随时咨询我。
Mongo2file库是一个 Mongodb 数据库转换为表格文件的库。
在我的日常工作中经常和 mongodb 打交道,而从 mongodb 数据库中批量导出数据为其他格式则成为了刚需。
如果您跟我一样每次导出数据时都需要重新编写或到处寻找 脚本代码 的话,这个库可能会对您产生帮助。
mongo2file 依赖于 PyArrow 库。它是 C++ Arrow 的 Python 版本实现。
PyArrow 目前与 Python 3.7、3.8、3.9 和 3.10 兼容。
仓库地址: https://github.com/apache/arrow
如果您在 Windows 上遇到任何的导入问题或错误,您可能需要安装 Visual Studio 2015。
警告: PyArrow 目前只支持到 win64 位 ( Python 64bit ) 操作系统。
其次,除了常见的 csv、excel、以及 json 文件格式之外, mongo2file 还支持导出 pickle、feather、parquet 的二进制压缩文件。
pickle、feather、parquet 是 Python 序列化数据的一种文件格式, 它把数据转成二进制进行存储。从而大大减少读取的时间。
pip install mongo2file
快速开始
import os from mongo2file import MongoEngine
M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_'),
collection=os.getenv('MONGO_COLLECTION', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_excel() assert "successfully" in result_ def to_pickle(): result_ = M.to_pickle() assert "successfully" in result_ def to_feather(): result_ = M.to_feather() assert "successfully" in result_ def to_parquet(): result_ = M.to_parquet() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类指定了 mongodb 表名称时、将对数据表 (mongodb集合) 进行导出操作。
其类方法参数包括:
import os from mongo2file import MongoEngine """
作用于 MongoEngine 类未指定表名称时
""" M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_json() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类只指定了 mongodb 库名称时、将对数据库下所有集合进行导出操作。
对于 mongodb 的全表查询、条件查询、聚合操作、以及索引操作(当数据达到一定量级时建议) 并不是直接影响 数据导出的最大因素。
因为 mongodb 的查询一般而言都非常快速,主要的瓶颈在于读取 数据库 之后将数据转换为大列表存入 表格文件时所耗费的时间。
_这是一件非常可怕的事情_。
当没有多线程(当然这里的多线程并不是对同一文件进行并行操作,文件写入往往是线程不安全的)、 数据表查询语句无优化时,并且当数据达到一定量级时(比如 100w 行),单表单线程表现出来的效果真是让人窒息。
在 mongo2file 在进行大数据量导出时表现的并没有多么优秀。导致的主要原因可能是:
mongo2file 表现的不如人意时,我做出了一下改进:
Reference API
MongoEngine
MongoEngine( host='localhost', port=27017, username=None, password=None, database='测试库', collection='测试表_200000' )
to_csv(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_excel(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效 :param mode: 导出模式, 枚举类型、sheet 或 xlsx, 当 is_block 为 True 时生效 :param ignore_error: 是否忽略错误、数据表中存在非序列化类型时使用、这将一定程度上影响程序的性能
to_json(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_pickle(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_feather(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_parquet(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
大家好,我是吴老板。以上就是今天要分享的全部内容了,总的来说,Mongo2file库是一个可以将 Mongodb 数据库转换为表格文件的库,不仅支持导出csv、excel、以及 json 文件格式, 还支持导出 pickle、feather、parquet 的二进制压缩文件。欢迎大家积极尝试,在使用过程中有遇到任何问题,欢迎随时联系我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20