
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,作业内容包括采集网易云音乐热评评论内容,数据量1W作业足够,然后就是做点数据分析相关的工作即可。这份大作业里边有网络爬虫,有数据分析和数据处理,还有可视化,算是一个大实验了,还需要上交实验报告。
首先是数据来源,来自网易云音乐热评,代码这里就不放出来了,调用了API获取的,抓取难度就少了许多,这里不在赘述了。
时间处理
下面的代码主要是评论时间分布,主要是针对时间列做了数据处理,常规操作,你也对照的去以日期和月份去挖掘下有意思的事情。
import pandas as pd from pyecharts import Line # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 获取时间 df['time'] = [int(i.split(' ')[1].split(':')[0]) for i in df['date']] # 分组汇总 date_message = df.groupby(['time'])
date_com = date_message['time'].agg(['count'])
date_com.reset_index(inplace=True) # 绘制走势图 attr = date_com['time']
v1 = date_com['count']
line = Line("歌曲被爆抄袭后-评论的时间分布", title_pos='center', title_top='18', width=800, height=400)
line.add("", attr, v1, is_smooth=True, is_fill=True, area_color="#000", is_xaxislabel_align=True, xaxis_min="dataMin", area_opacity=0.3, mark_point=["max"], mark_point_symbol="pin", mark_point_symbolsize=55)
line.render("歌曲被爆抄袭后-评论的时间分布.html")
运行之后,得到的效果图如下所示:
可以看到评论的小伙伴喜欢在下午临近下班和晚上的时候进行评论。
代码和上面差不多,只需要更改下数据即可。
import pandas as pd # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 分组汇总 user_message = df.groupby(['userid'])
user_com = user_message['userid'].agg(['count'])
user_com.reset_index(inplace=True)
user_com_last = user_com.sort_values('count', ascending=False)[0:10]
print(user_com_last)
运行之后,得到的结果如下所示:
可以看到有忠粉,狂粉,评论数据上百,恐怖如斯。
词云这个老生常谈了,经常做,直接套用模板,改下底图即可,代码如下:
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import random import jieba # 设置文本随机颜色 def random_color_func(word=None, font_size=None, position=None, orientation=None, font_path=None, random_state=None): h, s, l = random.choice([(188, 72, 53), (253, 63, 56), (12, 78, 69)]) return "hsl({}, {}%, {}%)".format(h, s, l) # 读取信息 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna()
words = pd.read_csv('chineseStopWords.txt', encoding='gbk', sep='t', names=['stopword']) # 分词 text = '' for line in df['comment']:
text += ' '.join(jieba.cut(str(line), cut_all=False)) # 停用词 stopwords = set('')
stopwords.update(words['stopword'])
backgroud_Image = plt.imread('music.jpg')
wc = WordCloud(
background_color='white',
mask=backgroud_Image,
font_path='FZSTK.TTF',
max_words=2000,
max_font_size=250,
min_font_size=15,
color_func=random_color_func,
prefer_horizontal=1,
random_state=50,
stopwords=stopwords
)
wc.generate_from_text(text) # img_colors = ImageColorGenerator(backgroud_Image) # 看看词频高的有哪些 process_word = WordCloud.process_text(wc, text)
sort = sorted(process_word.items(), key=lambda e: e[1], reverse=True)
print(sort[:50])
plt.imshow(wc)
plt.axis('off')
wc.to_file("网易云音乐评论词云.jpg")
print('生成词云成功!')
最后生成的词云图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
感觉还是年轻的粉丝居多啊!
这个代码稍微复杂一些了,毕竟涉及到地图,代码如下:
import pandas as pd from pyecharts import Map def city_group(cityCode): """
城市编码
""" city_map = { '11': '北京', '12': '天津', '31': '上海', '50': '重庆', '5e': '重庆', '81': '香港', '82': '澳门', '13': '河北', '14': '山西', '15': '内蒙古', '21': '辽宁', '22': '吉林', '23': '黑龙江', '32': '江苏', '33': '浙江', '34': '安徽', '35': '福建', '36': '江西', '37': '山东', '41': '河南', '42': '湖北', '43': '湖南', '44': '广东', '45': '广西', '46': '海南', '51': '四川', '52': '贵州', '53': '云南', '54': '西藏', '61': '陕西', '62': '甘肃', '63': '青海', '64': '宁夏', '65': '新疆', '71': '台湾', '10': '其他',
}
cityCode = str(cityCode) return city_map[cityCode[:2]] # 读取数据 df = pd.read_csv('music_comments.csv', header=None, names=['name', 'userid', 'age', 'gender', 'city', 'text', 'comment', 'commentid', 'praise', 'date'], encoding='utf-8-sig') # 根据评论ID去重 df = df.drop_duplicates('commentid')
df = df.dropna() # 进行省份匹配 df['location'] = df['city'].apply(city_group) # 分组汇总 loc_message = df.groupby(['location'])
loc_com = loc_message['location'].agg(['count'])
loc_com.reset_index(inplace=True) # 绘制地图 value = [i for i in loc_com['count']]
attr = [i for i in loc_com['location']]
print(value)
print(attr)
map = Map("歌曲被爆抄袭后评论用户的地区分布图", title_pos='center', title_top=0)
map.add("", attr, value, maptype="china", is_visualmap=True, visual_text_color="#000", is_map_symbol_show=False, visual_range=[0, 60])
map.render('歌曲被爆抄袭后评论用户的地区分布图.html')
最后得到的效果图如下所示:
可以看到四川、广东省的评论数量居多。
代码和上面的差不多,这里不再赘述,直接上效果图了。
可以看到女粉丝占据了大头。
大家好,我是Python进阶者。这篇文章主要基于网易云热评数据,利用了Python中的数据处理库pandas进行数据处理和分析,并利用可视化库pyecharts给大家分享了相关图形的制作方法,并发现了一些有趣的数据分析结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12