
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个学生娃子找我帮忙做点可视化的作业,其实倒是也不难,觉得挺有意思,这里拿出来给大家分享,主要是完成了轮播图的制作,显得作业高大上一些。
首先是数据来源,来自百度疫情实时大数据报告,如下图所示。
新增感染病例
这里直接上代码和效果图,如下所示:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"]
shanxi_data = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 绘制陕西疫情地图 map = (
Map()
.add('陕西省', [(i, j) for i, j in zip(shanxi_city, shanxi_data)], '陕西')
.set_global_opts(title_opts=opts.TitleOpts(title='陕西省新增感染病例疫情图'), visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True))
) # 渲染数据 map.render('陕西省新增感染病例疫情图.html')
运行之后,得到的效果图如下所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
代码和上面差不多,只需要更改下数据即可,这里直接放效果图了,如下图所示:
这里给大家分享轮播效果图的代码,原理倒是不难,后面自己直接套用就行,代码如下:
from pyecharts.charts import Map, Timeline from pyecharts import options as opts # 1. 准数据 shanxi_city = ["西安市", "延安市", "咸阳市", "渭南市", "安康市", "汉中市", "宝鸡市", "铜川市", "商洛市", "榆林市", "韩城市", "杨凌示范区"] xinzeng = [46, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] xianyou = [1747, 13, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0] leiji = [2094, 21, 31, 18, 26, 26, 13, 8, 7, 3, 1, 1] zhiyu = [304, 8, 20, 17, 26, 26, 13, 8, 7, 3, 1, 1] siwang = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 2. 绘制新增疫情地图:格式一 map1 = ( Map(init_opts=opts.InitOpts(width="700px", height="300px", theme="blue")) .add('新增病例', [(i, j) for i, j in zip(shanxi_city, xinzeng)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=50)) ) # 3. 绘制现有疫情地图:格式二 map2 = ( Map() .add('现有病例', [(i, j) for i, j in zip(shanxi_city, xianyou)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=1750, is_piecewise=True)) ) # 4. 绘制累计疫情地图:格式三 map3 = ( Map() .add('累计病例', [(i, j) for i, j in zip(shanxi_city, leiji)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=2100, is_piecewise=True)) ) # 5. 绘制治愈疫情地图:格式四 map4 = ( Map() .add('治愈病例', [(i, j) for i, j in zip(shanxi_city, zhiyu)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=310, is_piecewise=True)) ) # 6. 绘制死亡疫情地图:格式五 map5 = ( Map() .add('死亡病例', [(i, j) for i, j in zip(shanxi_city, siwang)], '陕西') .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=3, is_piecewise=True)) ) # 7. 创建组合类对象 timeline = Timeline(init_opts=opts.InitOpts(width='720px', height='350px')) # 8. 在组合对象中添加需要组合的图表对象 timeline.add(chart=map1, time_point="陕西省新增病例疫情图") timeline.add(chart=map2, time_point="陕西省现有病例疫情图") timeline.add(chart=map3, time_point="陕西省累计病例疫情图") timeline.add(chart=map4, time_point="陕西省治愈病例疫情图") timeline.add(chart=map5, time_point="陕西省死亡病例疫情图") timeline.add_schema(is_auto_play=True, play_interval=2000) # 9. 渲染数据 timeline.render('陕西省疫情轮播图.html')
实现的效果图如下:
实际上它是动态的,我这里没有转gif格式,看上去有点干巴,问题不大。
大家好,我是Python进阶者。这篇文章主要基于百度疫情实时大数据报告数据,利用了Python中的可视化库pyecharts给大家分享了省位地图的制作和轮播图的制作方法。
最后也欢迎大家积极尝试,有好的内容也可以分享给我噢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11