
作者:俊欣
来源:关于数据分析与可视化
大家好,我是俊欣,本篇文章应该算得上是2022年的第一篇原创了,抱歉,元旦期间小编有点偷懒。
今天小编来给大家讲一下Pandas模块当中的数据统计与排序,说到具体的就是value_counts()方法以及sort_values()方法。
value_counts()方法,顾名思义,主要是用于计算各个类别出现的次数的,而sort_values()方法则是对数值来进行排序,当然除了这些,还有很多大家不知道的衍生的功能等待被挖掘,下面小编就带大家一个一个的说过去。
我们这次用到的数据集是“非常有名”的泰坦尼克号的数据集,该数据源能够在很多平台上都能够找得到
import pandas as pd
df = pd.read_csv("titanic_train.csv")
df.head()
output
首先我们来看一下常规的用法,代码如下
df['Embarked'].value_counts()
output
S 644 C 168 Q 77 Name: Embarked, dtype: int64
下面我们简单来介绍一下value_counts()方法当中的参数,
DataFrame.value_counts(subset=None,
normalize=False,
sort=True,
ascending=False,
dropna=True)
常用到参数的具体解释为:
上面返回的结果是按照从大到小来进行排序的,当然我们也可以反过来,从小到大来进行排序,代码如下
df['Embarked'].value_counts(ascending=True)
output
Q 77 C 168 S 644 Name: Embarked, dtype: int64
同时我们也可以对索引,按照字母表的顺序来进行排序,代码如下
df['Embarked'].value_counts(ascending=True).sort_index(ascending=True)
output
C 168 Q 77 S 644 Name: Embarked, dtype: int64
当中的ascending=True指的是升序排序
默认的是value_counts()方法不会对空值进行统计,那要是我们也希望对空值进行统计的话,就可以加上dropna参数,代码如下
df['Embarked'].value_counts(dropna=False)
output
S 644 C 168 Q 77 NaN 2 Name: Embarked, dtype: int64
我们可以将数值的统计转化成百分比式的统计,可以更加直观地看到每一个类别的占比,代码如下
df['Embarked'].value_counts(normalize=True)
output
S 0.724409 C 0.188976 Q 0.086614 Name: Embarked, dtype: float64
要是我们希望对能够在后面加上一个百分比的符号,则需要在Pandas中加以设置,对数据的展示加以设置,代码如下
pd.set_option('display.float_format', '{:.2%}'.format) df['Embarked'].value_counts(normalize = True)
output
S 72.44% C 18.90% Q 8.66% Name: Embarked, dtype: float64
当然除此之外,我们还可以这么来做,代码如下
df['Embarked'].value_counts(normalize = True).to_frame().style.format('{:.2%}')
output
Embarked S 72.44% C 18.90% Q 8.66%
和Pandas模块当中的cut()方法相类似的在于,我们这里也可以将连续型数据进行分箱然后再来统计,代码如下
df['Fare'].value_counts(bins=3)
output
(-0.513, 170.776] 871 (170.776, 341.553] 17 (341.553, 512.329] 3 Name: Fare, dtype: int64
我们将Fare这一列同等份的分成3组然后再来进行统计,当然我们也可以自定义每一个分组的上限与下限,代码如下
df['Fare'].value_counts(bins=[-1, 20, 100, 550])
output
(-1.001, 20.0] 515 (20.0, 100.0] 323 (100.0, 550.0] 53 Name: Fare, dtype: int64
pandas模块当中的groupby()方法允许对数据集进行分组,它也可以和value_counts()方法联用更好地来进行统计分析,代码如下
df.groupby('Embarked')['Sex'].value_counts()
output
Embarked Sex C male 95 female 73 Q male 41 female 36 S male 441 female 203 Name: Sex, dtype: int64
上面的代码是针对“Embarked”这一类别下的“Sex”特征进行分组,然后再进一步进行数据的统计分析,当然出来的结果是Series数据结构,要是我们想让Series的数据结果编程DataFrame数据结构,可以这么来做,
df.groupby('Embarked')['Sex'].value_counts().to_frame()
下面我们来谈一下数据的排序,主要用到的是sort_values()方法,例如我们根据“年龄”这一列来进行排序,排序的方式为降序排,代码如下
df.sort_values("Age", ascending = False).head(10)
output
我们看到排序过之后的DataFrame数据集行索引依然没有变,我们希望行索引依然可以是从0开始依次的递增,就可以这么来做,代码如下
df.sort_values("Age", ascending = False, ignore_index = True).head(10)
output
下面我们简单来介绍一下sort_values()方法当中的参数
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', # last,first;默认是last ignore_index=False, key=None)
常用到参数的具体解释为:
我们还可以对多个字段进行排序,代码如下
df.sort_values(["Age", "Fare"], ascending = False).head(10)
output
同时我们也可以对不同的字段指定不同的排序方式,如下
df.sort_values(["Age", "Fare"], ascending = [False, True]).head(10)
output
我们可以看到在“Age”一样的情况下,“Fare”字段是按照升序的顺序来排的
我们可以自定义一个函数方法,然后运用在sort_values()方法当中,让其按照自己写的方法来排序,我们看如下的这组数据
df = pd.DataFrame({ 'product': ['keyboard', 'mouse', 'desk', 'monitor', 'chair'], 'category': ['C', 'C', 'O', 'C', 'O'], 'year': [2002, 2002, 2005, 2001, 2003], 'cost': ['$52', '$24', '$250', '$500', '$150'], 'promotion_time': ['20hr', '30hr', '20hr', '20hr', '2hr'],
})
output
当中的“cost”这一列带有美元符号“$”,因此就会干扰排序的正常进行,我们使用lambda方法自定义一个函数方法运用在sort_value()当中
df.sort_values( 'cost',
key=lambda val: val.str.replace('$', '').astype('float64')
)
output
当然我们还可以自定义一个更加复杂一点的函数,并且运用在sort_values()方法当中,代码如下
def sort_by_cost_time(x): if x.name == 'cost': return x.str.replace('$', '').astype('float64') elif x.name == 'promotion_time': return x.str.replace('hr', '').astype('int') else: return x
df.sort_values(
['year', 'promotion_time', 'cost'],
key=sort_by_cost_time
)
output
还有另外一种情况,例如我们遇到衣服的尺码,XS码、S码、M码、L码又或者是月份,Jan、Feb、Mar、Apr等等,需要我们自己去定义大小,这个时候我们需要用到的是CategoricalDtype
cat_size_order = CategoricalDtype(
['XS', 'S', 'M', 'L', 'XL'],
ordered=True
)
cat_size_order
output
CategoricalDtype(categories=['XS', 'S', 'M', 'L', 'XL'], ordered=True)
于是针对下面的数据
df = pd.DataFrame({ 'cloth_id': [1001, 1002, 1003, 1004, 1005, 1006], 'size': ['S', 'XL', 'M', 'XS', 'L', 'S'],
})
output
我们将事先定义好的顺序应用到该数据集当中,代码如下
df['size'] = df['size'].astype(cat_size_order)
df.sort_values('size')
output
先通过astype()来转换数据类型,然后再进行排序
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08