
作者:潮汐
来源:Python 技术
随着技术栈的越来越成熟,为了解决重复的劳动力型工作,越来越多的人开始学习自动化办公,使用技术帮助自己高效工作,提升工作效率,今天的文章讲解如何使用Python技术中的神奇工具来协助咱们自动化办公,这个神器就是 xlsxwriter。
那什么是 xlsxwriter 呢?
Xlsxwriter 是一个用于编写 Excel 文件格式文件的 Python 模块,xlsxwriter 可以用来写文本,数字,公式和超链接到多个工作表,它支持的功能也有很多,譬如格式化、单元格合并、图标功能等,具体功能如下:
02
另外它还支持Python 3.4+和PyPy3,并且只使用标准库。但值得注意的是它不支持读或者改现有的excel文件。
xlsxwriter 同样也使用 pip 安装,安装语句如下:pip install xlsxwriter
以下是关于 xlsxwriter
import xlsxwriter
workbook = xlsxwriter.Workbook('demo.xlsx') # 建立文件 worksheet = workbook.add_worksheet() # 建立sheet, 可以使用work.add_worksheet('employee')来指定sheet名,如果命名中文名会报UnicodeDecodeErro的错误 worksheet.write('A1', 'Hello world') # 向A1写入文字 workbook.close()
03
下面简单看一个实例,新增一个表格,再在表格中添加文字、数据以及图片,最后将工作表保存在当前工作空间中,详细实例如下:
import xlsxwriter def simple_example(): # 创建一个新的Excel文件并添加一个工作表 workbook = xlsxwriter.Workbook('demo.xlsx')
worksheet = workbook.add_worksheet() # 确定第一栏,使文字更清楚 worksheet.set_column('A:A', 20) # 添加粗体格式以突出显示单元格 bold = workbook.add_format({'bold': True}) # 简单的写一些文字 worksheet.write('A1', 'Hello') # 另起一行写入文字并加粗 worksheet.write('A2', 'World', bold) # 用行/列表示法写一些数字 worksheet.write(2, 0, 123)
worksheet.write(3, 0, 13.432) # 插入一张图片. worksheet.insert_image('B5', 'logo.jpeg')
workbook.close() if __name__ == '__main__':
simple_example()
实例结果图:
04
下面的实例讲解新建表格添加相应数据求和。
def sum_data(): workbook = xlsxwriter.Workbook('demo.xlsx') # 建立文件 worksheet = workbook.add_worksheet()
add_data = (
['A1', 1087],
['A2', 1056],
['A3', 300],
['A4', 590],
) # 按标号写入是从0开始的,按绝对位置'A1'写入是从1开始的 row = 0 col = 0 # 遍历数据并逐行写出它 for item, cost in (add_data):
worksheet.write(row, col, item)
worksheet.write(row, col + 1, cost)
row += 1 # 用公式写出总数 worksheet.write(row, 0, 'Total')
worksheet.write(row, 1, '=SUM(B1:B4)') # 调用excel的公式表达式 workbook.close()
求和结果如下:
05
以下实例讲解输出数字格式,使用workbook.add_format()函数进行自定义新增和运算后的输出结果,详细步骤如下:
def self_define_format(): # 建文件及sheet. workbook = xlsxwriter.Workbook('demo2.xlsx')
worksheet = workbook.add_worksheet() # Add a bold format to use to highlight cells. 设置粗体,默认是False bold = workbook.add_format({'bold': True}) # 定义数字格式 money = workbook.add_format({'num_format': '$#,##0'}) # Write some data headers. 带自定义粗体blod格式写表头 worksheet.write('A1', 'Item', bold)
worksheet.write('B1', 'Cost', bold) # Some data we want to write to the worksheet. add_data = (
['A1', 1087],
['A2', 1056],
['A3', 300],
['A4', 590],
) # Start from the first cell below the headers. row = 1 col = 0 # Iterate over the data and write it out row by row. for item, cost in (add_data):
worksheet.write(row, col, item) # 带默认格式写入 worksheet.write(row, col + 1, cost, money) # 带自定义money格式写入 row += 1 # Write a total using a formula. worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 1, '=SUM(B2:B5)', money)
workbook.close()
输出结果如下:
06
在单元格输出结果中加入日期格式:
def write_date(): from datetime import datetime
workbook = xlsxwriter.Workbook('demo3.xlsx')
worksheet = workbook.add_worksheet() # 添加粗体格式以突出显示单元格. bold = workbook.add_format({'bold': 1}) # 为带钱的单元格添加数字格式. money_format = workbook.add_format({'num_format': '$#,##0'}) # 添加Excel日期格式. date_format = workbook.add_format({'num_format': 'mmmm d yyyy'}) # 调整列的宽度 worksheet.set_column(1, 1, 15) # 写入数据表头 worksheet.write('A1', 'Item', bold)
worksheet.write('B1', 'Date', bold)
worksheet.write('C1', 'Cost', bold) # 将数据写入工作表 add_data = (
['A1', '2013-01-13', 1875],
['A2', '2013-01-14', 345],
['A3', '2013-01-16', 564],
['A4', '2013-01-20', 10987],
) # 从标题下面的第一个单元格开始. row = 1 col = 0 for item, date_str, cost in (add_data): # 将日期字符串转换为datetime对象 date = datetime.strptime(date_str, "%Y-%m-%d")
worksheet.write_string(row, col, item)
worksheet.write_datetime(row, col + 1, date, date_format)
worksheet.write_number(row, col + 2, cost, money_format)
row += 1 # 用公式写出总数 worksheet.write(row, 0, 'Total', bold)
worksheet.write(row, 2, '=SUM(C2:C5)', money_format)
workbook.close()
输出结果如下:
07
今天的文章讲解了神器 xlsxwriter 操作 Excel 的基本操作,当然还有更多关于 xlsxwriter 有趣的知识点还未分享,欲知后事如何,下回咱们接着分享,感兴趣的朋友们可以试试,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02