
作者: 俊欣
来源:关于数据分析与可视化
前不久,小编刷到这样一条短视频,“1.7亿的90后仅有约1000万对结婚,结婚率不到10%”,当然我们也无法查实当中数据的来源以及真实性,不过小编倒是总能听说身边的朋友在抱怨脱单难、找不到合适的对象。
今天小编通过Python写了一个简单的脚本在抓取公开的相亲文案,看看在相亲的都是些什么样的人?他们的择偶标准又是什么样子的?什么样子的人更加容易脱单?
我们引入需要用到的库,这里用到Python当中的requests库来发送和接受请求,通过正则表达式re这个库来解析数据
import requests
from tenacity import * import re import time
很多时候对遇到请求超时的情况,因此当出现一次错的时候,我们会多尝试几次,因此这里使用retry装饰器来多次尝试
@retry(stop=stop_after_attempt(5)) def do_requests(url):
response = requests.get(url, headers=headers, proxies=proxies, timeout=10) return response.text
我们抓取的数据包括出生年份、身高/体重、学历、收入、职业、自我介绍、择偶标准、车房情况等等,都是通过正则表达式re库来实现的,
date_of_birth = re.compile("<br/>①出生年月/星座(.*?)<br/>", re.M | re.S) sex = re.compile("<br/>【基本资料】(.*?)<br/>") height = re.compile("<br/>②身高/体重(.*?)<br/>") education = re.compile("<br/>⑤学历(.*?)<br/>") jobs_1 = re.compile("<br/>⑥职业(.*?)<br/>") income = re.compile("<br/>⑦月均收入(.*?)<br/>") married = re.compile("<br/>⑨有无婚史(.*?)<br/>") house_cars = re.compile("<br/>⑧车房情况(.*?)<br/>") self_intro = re.compile("<br/>⑪ 自我介绍(.*?)<br/>") requirements = re.compile("<br/>【择偶标准】<br/>(.*?)</a>") family_member = re.compile("<br/>⑩家庭成员(.*?)<br/>")
下面我们通过pyecharts库来绘制一下分析的结果,对了,要是读者朋友不知道怎么使用pyecharts这个库,可以阅读一下小编写的上几篇文章,都是非常干货的
我们先来看一下性别比例,从分布来看,女生前来相亲的比例更高,主要也是因为数据源是来自北京、上海、杭州等大城市的相亲介绍,大城市中似乎女生脱单更加困难一些,
我们再来看一下单身的女性的特征,首先她们的年龄主要集中在94、93以及95年左右,正好都是处在适婚的年龄
而她们的学历,本科占到了绝大多数,基本上都有本科的学历,而大专的占比排在第二,硕士和博士处于少数
另外小编也对单身女性的星座做了一个统计,发现处女座、天秤座以及射手座、白羊座的女性单身率略高一些
最后,我们来看一下她们的择偶标准吧,小编将她们的择偶标准单独提取出来,然后绘制成了词云图
review_list = []
reviews = get_cut_words("".join(df_girls["requirements"].astype(str).tolist()))
reviews_counter = Counter(reviews).most_common(200)
print(reviews_counter)
for review in reviews_counter:
review_list.append((" " + review[0] + " ") * review[1])
stylecloud.gen_stylecloud(text=" ".join(review_list), max_words=500, collocations=False,
font_path="KAITI.ttf", icon_name="fab fa-apple", size=653,
output_name="4.png")
最后呈现出来的样子如下图所示
可见相亲市场上的女生,她们首先是希望男方是要有房有车的,其次要是男方之前存在婚史,女生会比较介意,然后要是有稳定的工作、有能力有责任心,通常都会给女生留下比较好的印象,而至于外在条件上,大多数女生的回答则是身高在175-180左右,年龄在90-97年之间。
近年来,随着人们思想观念的改变,相亲也逐渐得到年轻人的接受与认可,特别是对于那些圈子比较窄,接触不到异性的人而言。小编希望每个人都能够在最后收获爱情,拥有美好的生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25