京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果有人问:2021年最有前途的职业是什么?数据分析师一定名列前茅!
在大数据时代的今天,数据分析作为一个热门行业,曾被Times时代杂志誉为“21世纪最热门五大新兴”行业之一。据统计,目前在世界五百强的企业中,有百分之九十的企业都建立了数据分析部门,未来中国对数据分析师的需求更是呈现上升趋势。
在这种趋势之下,数据分析已经不单单是数据分析师的“专业本领,”意味着成为我们每一个职场人士都需要掌握的技能。
对于职场已入瓶颈,或者想谋求更好发展的互联网人而言,转行数据分析正是一个不可多得的机遇。
在转行数据分析之前,小编先从从业者的角度带着大家梳理一下数据分析,方便大家根据自己的实际情况做出选择。
01、人人都可以转行数据分析吗?
首先我可以明确地告诉大家,零基础转行数据分析是可行的。
但过程并非是一帆风顺的,需要经过很多努力。但是如果你不愿意吃学习的苦;怀着三天打鱼,两天晒网的心态;那么我建议你趁早放弃。
自从大数据的概念兴起后,数据分析师随之而来,很多职场人士都想在这个香饽饽上咬一口,但是你真的了解过这个行业吗?
数据分析作为新兴行业,根据岗位职责总体可以概括为以下两个方向:
我们先来聊聊业务岗位的数据分析师,此方向更加看重逻辑思维,比如你思考框架的完整性、思维的灵活性,对数据要有敏锐的嗅觉。除此之外,你还需要掌握一些行之有效的数据分析方法,并且能够灵活的与自身工作相结合。比如:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等等。
另一个则是技术方向的数据分析师,此方向更看重数据技术,比如统计学基础、数据库操作(SQL等)、编程语言(Python、R等)、机器学习等等。你需要对业务有很深的理解,这样才能对业务数据进行清洗、建模、分析。此方向的数据分析师薪资虽然高,但难度也是也极大的,对于刚刚入门数据分析的朋友,我更加推荐业务岗位的数据分析师。
如果你真的对数据分析感兴趣,就要付出行动,而不是把它停留在脑海里。前段时间刷微博看到了一段很有意思的话,分享给大家。
15岁觉得游泳难,放弃游泳,
18岁遇到一个你喜欢的人约你去游泳,你只好说“我不会”。
18岁觉得英文难,放弃英文,28岁出现一个很棒但要会英文的工作,你只好说“我不会”。
人生前期越嫌麻烦,越懒得学,后来就越可能错过让你动心的人和事,错过新风景。
02、数据分析师的日常工作有哪些?
在聊完数据分析的岗位职责划分之后,我想再和大家聊聊数据分析日常需要做哪些工作?
1.日常数据监控
数据分析师必须会监控数据和收集数据,利用数据得出有效的结论,并提供更好的决策方案。数据获取主要有两种方式:内部数据和外部获取。内部数据又分为两种方式,一种是通过公司的数据库和数据表直接获取;
另一种则是收集数据,你必须要通过整理公司的大量文件,从中收集到你所需要的数据。而外部获取则主要是检索,通过搜索引擎、行业报告还有技术爬取等手段获取到数据。
2.评估业务指标
最近搞的一个运营活动效果好不好?
我们该如何衡量这个标准呢?如果是微信的运营者,他会通过自己的用户量、阅读量,来作为这个平台的参数指标。
这部分内容在开始之前就需要数据分析师来全盘考虑,依据日常运营指标,来制定全盘的运营计划。并根据方案来布置需要监控/收集数据的位置,这是一个系统的工程。
3.业务优化
没有一款产品是完美的,只要被生产出来,就一定有它可以提升的空间。
当我们拿到一款产品,并找到它的发展目标。那么,我们就可以根据产品的生命周期,不断地监控、发现、优化产品的不足。
4.业务决策
当我们在帮助一款产品做决策时,很多小伙伴第一反应就是A/B测试。的确,这是很重要的一方面,但绝不是全部。
在决策过程中,我们更要注重根据产品需要解决的问题,从而去设立对应问题的优先级。哪些是应该优先处理的?哪些特性的改变,可以快速改善产品?
这个时候就需要我们数据分析师发挥作用了,协助产品做测试,从而判断问题的优先级。通过4个紧急、重要象限,来帮助产品做决策。
5.长远战略
现在的年轻人都喜欢什么啊?
这类问题往往不是那么迫切,但是为了公司的长远发展和自身影响力等,还是会接触到的。这里最关键的问题是如何从中挖掘出最有价值、最符合公司长远发展的问题,从而制定出符合公司个性化的产品。
成长就是在不断认识自我的状态下发展,希望这些东西可以帮助到正在迷茫中的朋友。总体而言,数据分析适合大多数人来学习,但是也需要付出一些努力。
03、关于学习资料
在写这篇文章之前,经过几个月的努力,我整理了一套数据分析技能视频,现在免费提供给大家学习,希望能够帮助职场人提升自己的技能,也希望能够帮助到想转行的小白,对于数据分析有个更深的认知。
扫码领取学习资料
祝你早日拿到心意offer!
数据分析学习资料
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15