京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:丁点帮你
作者:丁点helper
之前的文章讲了如何用R绘制箱形图,以此来帮助我们了解数据的整体分布情况、是否存在异常值。除此之外,箱形图还可以进行数据的组间比较。
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
本次我们用到的是学生的课堂调查数据,包括了性别、年级、专业、身高、最喜欢的动物(讲数据清理时用的是这个变量,还记得吗)等变量。数据名:survey.csv,数据链接:
首先导入数据,存入survey这个数据集中:
survey <- read.csv("//Users//Desktop//survey.csv",
header = TRUE) # 获取数据中包含的变量名 names(survey)
[1] "ClassProb" "Status" "Year" "Division" "Gender" "HtCm" "Hand" "Haircut" "Exercise" [10] "Coursework" "Web" "TV" "Social" "Econ" "Animal" "Friends" "Pulse"
接下来我们以Gender作为分组依据,先来看看这个变量的情况。
table(survey$Gender) Choose not to answer Female Gender non-conforming Male 1 1 117 1 118
我们发现,除了female和male,有的同学回答了Choose not to answer,Gender non-conforming,还有同学什么都没填,空缺。
今天我们暂时将这三种特殊情况从数据中删去。
# 查看针对Gender这个变量,同学们有几类回答 levels(survey$Gender)
[1] "" "Choose not to answer" "Female" "Gender non-conforming" "Male"
在这五类回答中,我们想保留的是第3、第5类。也就是说,仅保留Gender为"Female" 或 "Male"的记录。
# 把更新后的数据存储在survey2这个对象中 survey2 <- survey[survey$Gender %in% levels(survey$Gender)[c(3,5)],]
这里,a %in%b的作用是,用a中的元素去匹配b中的任意元素,如果匹配成功,则返回结果为TRUE,反之,则结果为FALSE。
此时,上面的语句就简化为如下所示,c()里面是TRUE和FALSE的集合,是a中每个元素与b匹配的结果。
survey2 <- survey[c(),] # 这是为了便于理解写的简化语句,不能够运行的
survey2中仅保留了匹配结果为TRUE的记录:
table(survey2$Gender) Choose not to answer Female Gender non-conforming Male 0 0 117 0 118
哎?虽然记录被删了,但Gender中之前包含的五个类都还在,用下面的droplevels()这个函数删掉那些没有记录的类。
survey2$Gender <- droplevels(survey2$Gender)
table(survey2$Gender)
Female Male
117 118
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
数据清理好之后,我们以身高HtCm这个变量为例,先用之前讲过的方法绘制箱形图,了解改变量的整体分布,然后对比性别之间的身高差异。
boxplot(survey2$HtCm, main="Boxplot of Ht in cm", col='orange', lwd=2)
一目了然,我们调查的是大学学生,却出现了身高小于100厘米的情况,不符合常理。现在去检查一下原始数据。
sort(survey2$HtCm) # 将身高从小到大排序
部分结果截图
实际操作中,大家要尽量核实那些极端身高数据的真实情况,修正数据。这里我们为便于教学,直接把那些小于100厘米的身高值记录为缺失。
然后利用整理后的身高数据绘制箱形图。
survey2$HtCm[survey2$HtCm < 100 ] <- NA
boxplot(survey2$HtCm, main="Boxplot of Ht in cm",
col='orange', lwd=2)
最后绘制不同性别学生的身高箱形图。
boxplot(survey2$HtCm~survey2$Gender,
main="Boxplot of Ht in cm",
col=c(2,3), lwd=2)
由图可知,男生的身高基本都高于女生。将两个箱形图放在一起,可以清晰地看到两组变量的大致情况,便于给两组做粗略的比较。
但是这男女生身高到底有没有统计学上的差异,肉眼是很难得出结论的,统计学上怎么做呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24