京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:Python爬虫与数据挖掘
作者:崔艳飞
大家好,我是崔艳飞。工作中经常会遇到,需要把两张Excel或Csv数据表通过关键字段进行关联,匹配对应数据的情况,Excel虽有Vlookup函数可以处理,但数据量大时容易计算机无响应,可能出现数据丢失,处理速度较慢是软肋,而Python只需几行代码就能轻松实现,且处理速度快,详细如下。
用Python实现两张Excel或Csv表数据关联处理。
软件:PyCharm
需要的库:pandas
1)如何读取要处理的Csv文件?
利用pandas库读取Csv文件。
2)如何读取要处理的Excel文件?
利用pandas库读取Excel文件。
3)如何通过关键字段关联匹配两张表中的数据?
利用merge()函数,通过关键字段,关联组合两张表中的数据。
4)如何保存结果?
利用to_csvl保存关联组合后的数据。
1、第一步导入需要的库
import pandas as pd
2、第二步读取要处理的Csv文件
# 读入表1 df1 = pd.read_csv('D:/a/1.csv', encoding='gbk')
3、第三步读取要处理的Excel文件
# 读入表2 df2 = pd.read_excel('D:/a/2.xlsx', encoding='utf-8')
4、第四步关联匹配数据,并保存结果文件
# 关联数据 data = df1.merge(df2, on='姓名',left_index=False, right_index=False, sort=False)
# 保存数据 data.to_csv('D:/a/result.csv', encoding='gbk',index=False)
1、处理前表1数据:
2、处理前表2数据:
3、处理后的关联匹配数据:
本文介绍了如何利用Python进行Excel和Csv间的数据关联处理,替代了Excel的Vlookup函数,由于不用显示源文件,节省了系统资源,处理效率更高,数据量越大,优势越明显,Python还有很多类似的函数,数据处理,唯快不破,有兴趣的同学可以研究下,有问题随时留言,一起讨论学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28