
嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL I的模拟试题时间了,今天给大家带来的是模拟试题(二)中的101-105题。(材料题)
不过,在出题前,要公布上一期91-95题的答案,大家一起来看!
96、A,B,C
97、B,C,D
98、A,D
99、B,C,D
100、A,B
你答对了吗?
现有订单表orders,包含字段:订单号order_id varchar(10),产品编号p_id varchar(10),产品类型type varchar(20),金额amount decimal(10,2)。
101.以下表名orders和字段名amount的使用,正确的是
A.orders.amount
B.orders_amount
C.orders$amount
D.orders[amount]
102.与表达式"产品类型 NOT IN (‘a’,’b’)"功能相同的表达式是
A.产品类型=’a’ AND 产品类型=’b’
B.产品类型!=’a’ OR 产品类型=’b’
C.产品类型=’a’ OR 产品类型!=’b’
D.产品类型!=’a’ AND 产品类型!=’b’
student表中有4个字段:StudentID(学生编号),Class(班级),CourseID(课程编号),Score(分数)
103.student 表中记录了同学每一次考试的成绩。那么以下哪组 sql 代码取数的结果中,StudentID字段取值不会出现重复
A.select StudentID,max(score) from student group by StudentID;
B.select distinct StudentID,Score from student;
C.select StudentID from student;
D.select StudentID from student where studentID is not null;
104.以下关于DISTINCT的⽤法,不正确的是
A.SELECT DISTINCT StudentID FROM student;
B.SELECT DISTINCT StudentID,Class FROM student;
C.SELECT StudentID,DISTINCT Class FROM student;
D.SELECT COUNT(DISTINCT StudentID) FROM student;
数据库中有两张表,users表中有三个字段(user_id,user_name,create_at),orders表中有三个字段(order_id,user_id,amount)
105.查询users表中存在而orders表中不存在的user_id
A.select users.user_id from users left join orders on users.user_id=orders.user_id;
B.select users.user_id from users right join orders on users.user_id=orders.user_id;
C.select users.user_id from users left join orders on users.user_id=orders.user_id where orders.user_id is null;
D.select users.user_id from users right join orders on users.user_id=orders.user_id where users.user_id is null;
认真答题哦,我们将在下一期公布正确答案,敬请期待。
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
Level Ⅰ:随报随考。
Level Ⅱ:随报随考。
Level Ⅲ:一年四届(3、6、9、12月的最后一个周六),每届考前一个月截止该届报名。
Level Ⅰ+Ⅱ:中国内地30+省市,70+城市,250+考场。考生可选择就近考场预约考试。
Level Ⅲ:中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05