京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:【公众号】
Python技术
人脸识别是一个既方便又安全的个人鉴权解决方案,被应用在各个场景中,从各种app,打卡门禁,到遍布各处的自动售卖机,已经和我们的生活密切结合了,不过可别掉以轻心,安全问题无小事
1
今天看到的一条新闻[1] ,给人脸识别的安全问题打上了大大的问号,怎么回事呢?
近日上海警方在查处一起伪造发票案时,牵出了一个破解人脸识别案,犯罪嫌疑人通过简单的手段,获取了大量的人脸信息
然后利用“活照片” app,把获取到的照片做成可以点头、摇头、眨眼,张嘴的视频
再通过劫持手机摄像头软件,轻松骗过手机的人脸识别环节
从而攻破广泛用于管理电子营业执照 App 的人脸识别系统,疯狂的开设虚假发票
2
之前也有破解人脸识别的新闻,依托清华大学人工智能研究院成立的团队瑞莱智慧,披露过一个研究成果:
研究人员根据一张照片,通过研究算法,制作一副特殊“眼镜”,就可以刷脸解锁他人手机或App身份认证。
戴上自制眼镜后,15分钟内破解了19款智能手机的人脸识别解锁系统,同样被破解的还包括十余款金融和政务服务类App。
研究人员表示,结合身份证号等个人信息,甚至可冒充机主完成线上银行开户。
3
这些新闻只是“人脸识别”黑产中的冰山一角
记者发现,网上存在大量提供破解人脸识别技术服务的群组,通过各种技术,用很便宜的价格,为客户提供各种场景的人脸识别服务,比如上班打卡考勤,甚至可以通过特殊的手机,随便破解运行在手机上的人脸识别应用,而且价格低廉
看的这里,我都不敢再随便晒我的头像了
面对这样的情况,专家不断地呼吁各方提高安全意识,敦促相关部门提高安全等级,修补安全漏洞……
这些无可厚非,但对于我们每个个体来说,远水解不了近渴,我的得主动出击做我们能做的,保护自己
1.头像分享需谨慎
通过调查可知,大部分都是通过窃取互联网上的用户头像训练以及进行突破人脸识别的
那么我们在分享个人头像时,就要谨慎,对于公信力不高的平台,最好不要轻易上传头像或者有脸的照片
2.个人信息保护牢
另外为了提高安全等级,很多人脸识别系统会配合采集个人信息作为副助验证,增强一定的安全性
那么我们就不要随便将个人信息泄露出去,特别是姓名,手机号,身份证号,这些关键信息,至少不要一起提供到不靠谱的平台上
3.主动防御
除了这些主动的通过习惯防范的方式,还有什么方法吗?
当然有,所谓“魔高一尺道高一丈”,那么怎么为我们的头像戴上面具呢
Fawkes是由芝加哥大学 SANDLab 研究人员开发,针对面部识别系统的隐私保护工具
它可以通过 AI 计算,为照片添加一层防识别 “隐身衣”,经测试,其已在最先进的面部识别技术中取得了百分百的胜利。
我们先看一组照片:
找不同
能看出两种照片的不同吗?
如果不仔细看是看不出来,甚至就算仔细看了,也未必能看出来
上面的图片中,左边的是原始图片,右边的是经过 Fawkes 伪装过的
神奇的是,经过处理后,人眼几乎看不出差异,而在机器看来却是完全不同的两张脸
这是如何实现的呢?
借用 Fawkes 为照片穿上隐身衣这篇文章上的解释:
Fawkes 在公开的研究论文里,详细描述了实现原理,不过比较复杂,简单来说就是:
Fawkes 并不是让你的照片对人脸识别系统隐形,而是通过代码做了一些微调,让你看起来好像另一个人,这个人可能时不存在的虚拟人像
关于虚拟人像,可参考 99% 的人并不知道 AI 生成人脸已经达到什么水平[5]
Fawkes 原理示意图:
Fawkes 原理示意图
前者是基于 Fawkes 算法来生成用户图像的伪装版本,后者是通过追踪器(Tracker)从网络资源中检索伪装的图像,并使用它们来训练未经授权的面部识别模型。最终可以发现模型输出的图像与原始图像并不相同
这是官方给出的效果对比:
效果对比图
看着很热闹,如何应用呢?
Fawkes 提供了两种应用方式
第一种是桌面应用,提供了 MAC 和 Windows 的下的软件[6],下载后直接使用即可
而且使用起来简单粗暴:
Fawkes 软件
转化完后,会保存在原始图片所在的目录里
第二种,可以安装 Fawkes 命令行工具
首先需要有 Python3.6 及其以上版本
然后需要安装 TensorFlow 2.0 以上版本,具体安装方法可以参考 TensorFlow 安装
最后使用 pip 安装 Fawkes
pip install fawkes
如果安装成功,就可以直接使用命令 fawkes 了
命令行参数为:
示例
fawkes -d ./imgs --mode min
将当前目录 imgs 里的所有图片以最小保护力度进行批量处理
两种保护方式各有好处,可根据自己实际情况选择
虽然人脸识别还有待提高安全性,但办法总比问题多
我们在加强安全意识的同时,可以利用技术手段提高自我保护的力度
这才是真正有效的方式,也是让自己不断强大起来的方式
这下,妈妈再也不用担心我的头像安全问题了,就聊到这里吧,赶紧去换一下社交网络上的头像
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15