
CDA数据分析师 出品
编译:Mika
十年前,研究人员认为让计算机来区分猫和狗几乎是不可能的。如今,计算机视觉识别的准确率已超过99%。Joseph Redmon通过一个叫YOLO的开源目标检测方法,可以迅速识别图像和视频中的目标。
10年前,计算机视觉研究者认为,要让一台电脑去分辨出一只猫和狗的不同之处,这几乎是不可能的,即便是在当时人工智能已经取得了重大突破的情况下。
Joseph Redmon家养的猫
Joseph Redmon家养的狗
但如今我们已经可以做到让它的正确率在99%以上。这个方法叫做图像分类,给它一张图,再给这张图贴上标签。通过这种方式,计算机就可以知道数千种的分类。
我是华盛顿大学的一名研究生,我正致力于一个名叫Darknet的项目,这是一个用来训练和测试计算机视觉模型的神经网络结构。
Joseph Redmon所进行的Darknet项目
让我们来看看Darknet是如何看待这张图片。
当我们在这张图片上运行识别器时,我们注意到,它不仅能判断出图片上是猫是狗,还能给出它是哪个品种的预测。这就是我们目前所达到的粒度级别。
它的预测是正确的,我的狗的确是一只阿拉斯加雪橇犬。
很明显,我们在图像识别上取得了惊人的进步。但是如果我们对这样一张图片运行识别器,会如何呢?
看一下,我们看到识别器给出了一个非常相似的预测。而且是正确的,图中是有一只阿拉斯加雪橇犬。但只使用这一个标签,我们并不能真正的了解这张图片,我们需要更强大的检测器。
我正在研究一个叫做目标检测的问题,也就是尝试将一张图上的所有目标物都找出来,然后将它们分别框起来,再加上标注。
这就是我们对这张照片运行检测器时所发生的。基于这样的结果,我们可以用计算机视觉算法做更多的事情。
我们发现,它知道这里有一只猫和一只狗。知道它们的相对位置,它们的大小,甚至还知道一些额外的信息,例如背景里有一本书。
如果你想建立一个基于计算机视觉的系统,比如说无人驾驶汽车或者机器人系统,这就是你想要得到的信息。你需要一个能与物质世界互动的系统。
当我最开始开展目标检测项目时,它要花20秒去处理一张图片。
为了理解为什么速度在这个领域是如此重要。举一个例子,这是一个2秒钟就能处理一张图片的检测器。这个检测器的速度要比处理每张图需要20秒的检测器快10倍。可以看到在它做出预测的时候,被检测的世界已经发生变化了。这对于一个应用来说是没有多大用处的。
每2秒处理一张图
如果我们将它的速度再提升10倍,这个检测器每秒可处理5张画面,这就好很多了。
每秒处理5张图
但是,举个例子。如果有任何重大的移动,它就反应不过来了。我可不想让这样的一个系统来驾驶我的汽车。
这是在我电脑上运行的实时检测系统。当我在移动时,它能顺利地追踪我。而且它强大到能适应不同的物体大小、姿势、向前、向后的改变,很了不起。
实时检测系统
如果我们想要建造一个基于计算机视觉的系统,那么这就是我们真正需要的。
仅仅是几年的时间,我们就从每张图20秒提升到了每张图20毫秒,速度提高了1000倍。我们是如何做到的呢?
过去,目标检测系统会将这张图片分成很多小区域,然后在每一块区域运行一下识别器。在识别器中获得最高分数的输出就会被认为是这张图片的检测结果。这涉及到要在一张图片上运行数千次识别器,以及数千次的神经网络评估才能获得检测结果。
而现在,我们训练了可以做出所有检测的单一网络,它能同时生成边界盒和类别概率。
使用我们的系统,不需要为了生成检测结果去重复上千数次地看同一张图片,只看一次就行了。这也是为什么我们称之为,目标检测的"YOLO(you only look once)法"(只看一次)。
有了这个速度,我们就不仅限于识别图像了,还可以实时处理视频。现在我们不仅看到了猫和狗,还能看到它们走来走去,互相嘻戏。
这是一个我们在微软的COCO数据库上,用80种不同种类的物品训练过的检测器。包含了各种东西,像勺子、叉子、碗等常见物品。
还有各种奇特的东西,动物、汽车、斑马、长颈鹿。
现在我们要做点儿有趣的事情,我们的摄像头将要对准观众区看看能检测出什么。
我们把检测阀值调低一点,这样就可以找出更多的观众。看下我们能不能找出这些停车标志,我们发现了一些背包。所有这些都是在电脑上实时处理的。
请大家记住,这是一个通用的目标检测系统。因此我们可以将它训练用于任何领域的图像识别。
我们在无人驾驶汽车中,用来发现停车标志 行人和自行车的代码,同样可以用于在组织活检中找出癌细胞。全球已经有很多研究者正在利用这一技术在医学、机器人学等方面取得了进展。
今天早上,我刚读到一篇文章,人们在内罗毕国家公园对动物数量进行普查,使用了YOLO作为检测系统的一部分。因为Darknet是一个开源项目,在公共领域任何人都可以免费使用。
但是我们想要让检测器能被更多人使用,也更好用因此通过结合模型优化,网络二值化和近似法,我们实际上已经可以在手机上进行目标检测了。
我真的很激动,因为我们在初级计算机视觉问题上有了强大的解决方案,同时任何人都可以使用它来做些什么。
接下来就看所有在座的各位,以及世界上所有能够使用这个软件的人了。我已经等不及想要看看,人们会用这一技术创造出什么来了,谢谢大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29