京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编译:Mika
【导读】
信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。
在一次TED演讲中,信息设计师汤米·麦考尔追溯了长达几个世纪的图形和图表的演变过程,并展示了复杂的数据是如何通过处理,演变为清晰、美观的可视化形式的。
我爱信息图表。
作为一个信息设计师,在过去25年中我跟各种各样的数据打交道。今天跟大家分享一些我的见解。
首先让我们聊一聊历史。
沟通是对信息的编码、传输和解码。沟通的突破标志着人类文化的转折点。在沟通方面,语言、文字和算术能力得到了很大的发展。它们让我们可以把想法编码为文字,并量化成数字。没有沟通能力,人类的发展将会停滞在石器时代。
尽管人类已经存在25万年,但仅在8000年前,才出现原始文字。在将近3000年后,首个正式的书写系统才成形。地图已存在了几千年,图表出现了数百年之久。
但通过图形来表示数量,还是一个相对较新的发展领域。
直至1786年,威廉·普莱费尔发明的首个条形图,这才催生了对数量信息的视觉显示形式。
1786年 威廉·普莱费尔发明的首个条形图
15年后,他引入了首个饼图和面积图。他这些发明仍是今天最常使用的图表类型。
1801年 威廉·普莱费尔的饼图和面积图
1857年,弗洛伦斯·南丁格尔发明了鸡冠花图 (又名南丁格尔玫瑰图),用来来向维多利亚女王介绍军队的死亡率。在用蓝色强调的部分,她展示了军队的大多数死亡可以如何被避免。
1857年 弗洛伦斯·南丁格尔的鸡冠花图
不久之后,查尔斯·米纳德绘制了拿破仑进军莫斯科的图表。其中展示了一支42.2万人的军队是如何在战斗、地理和冰冻的影响下付出惨痛代价,最终减少到只有1万人的。这当中,他将桑基图与制图以及温度线图表结合在一起。
1861年 查尔斯·米纳德 绘制的拿破仑进军莫斯科图
用图表让数据会说话
当有很多数据可用是,我总是很激动,特别是当它产生出有趣的图表形式时。
看到这张整理数千份联邦能源补贴数据的图,南丁格尔玫瑰图是它的灵感来源。图中仔细显示出,相比化石能源,可再生能源投入不足。
联邦能源补贴数据图
这个桑基图展示了美国经济中的能源流动,强调了近一半的能源消耗是作为废热流失的。
美国经济中的能源流动
我喜欢把数据用美观的形式展现。
在这里,硅谷女性的个人和职业联系可以被绘制成弧线。
硅谷女性的个人和职业联系
同时,全球范围内发明家的协作也可被绘制出来。
全球范围内发明家的协作图
我甚至为自己制作了图表。
我擅长数字领域,但我的拼字游戏玩得差劲。我做了这个图表来记住官方拼字字典里的所有两个字母和三个字母的单词。熟知这1168个单词显然是我的制胜法则。
有些时候我编写代码 ,去把数千个数据点快速生成图片,编程也让我可以制作交互式图表。现在我们还可以根据自己的条件来导航信息。
图表能让数据一目了然
奇特的图表当然看起来很酷,但又是很小且简单的一个点就足以满足所需,从去解决特定的思考任务。
2006年,纽约时报重新设计他们的市场板块。将原本多达8页的股票列表削减到只有1页半的基本市场数据。其中列出了最常用的股票指标,但我想帮助投资者了解这些股票表现如何。
因此我增加了一个简单小点,用来展示现在价格在一年内的水平。这样只需看一眼,价值投资者就可以通过靠近左边的点去挑选出股价接近低位的股票;短线投资者可以通过靠近右边的点找出上升趋势的股票。
2006年 纽约时报重新设计的股票板块
不久之后,华尔街日报复制了这个设计,从而简单化通常是大部分图表的目标。
一张好的图胜过千言万语
但有时候我们需要复杂性,并充分展现出大量数据集。
盖洛普公司的前主席--亚力克·盖洛普,他有次给了我一本非常厚的书。数百页纸涵盖了60年的总统支持率数据。
我告诉他,整本书可以图表化在一页上。他说 "这不可能”。
这张就是,在一页中展示2万5千个数据点。
只需一眼就可以看出:多数总统以高支持率开场,但很少能够维持。像战争那样的事件最初会提升支持率,丑闻会引发下降。这些重要事件能在图表中被注释,在书中可不行。
数据可视化能力将越来越重要
要点在于,图表可以用惊人的效率传输数据。
图形能力,即读图和画图的能力仍然处于早期阶段。
新的图表将会出现,专业的用语将会发展。图表可以帮我们更快地思考,比如在一页纸上就看到整本书的信息,这就是开启新发现的关键。
我们的视觉皮层是用来解码复杂信息的,而且还非常擅长模式识别。如今,通过图形能力、数据可视化能力,我们能充分利用大脑内置GPU,从而轻松处理海量数据,去发现藏在里面的金子!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30