京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
作为一个搞技术的金融从业者,看到这个开源项目的时候,我的内心就两个字:卧槽!
从金融角度上,它涵盖了全面的股票数据,做数据分析和排行,并给出购买参考建议。
虽然市面上专业的App也有这些数据和功能,但这可是你自己用代码运行的项目。你可以在此基础上,实践你的想法,修改代码,做你的分析,建立自己的优势。
如果只是会用App和街上的大妈有什么区别?那个金融从业者不会自己做数据分析?
从技术角度上,这个开源项目非常综合,涵盖了:
如果一个人能把这个项目从头到尾学会,搞定。他找到一份Python开发的工作应该问题不大。
我觉得吧:
我们其实不缺好的开源项目,缺的是从头到尾去研究透一个项目的专注和决心!
你觉得呢?留言说说你的看法。
找到一个适合自己的好的项目,去把它研究透,好过泛泛的去看100个开源项目。
不要太在意技术是否主流,技术是相通的,同样都是Python,解决的问题也是一样的,学好一个很快就能学好另外一个。
这个项目就特别适合做金融分析,或者对金融,炒股有兴趣的,并且在学Python的人,可以一举三得:
特点提醒:这个项目主要是作为Python学习目的推荐给大家,也推荐给做金融分析的人!
但是我不建议小白盲目去炒股,尤其是现在大盘已经站上了3600点,已经到了街上大妈都在讨论股票的时候!如果现在进去,做炮灰的概率很大。
这是一个基于Python的全栈股票系统,先来上截两张图:
它每天定时(6点)抓取股票数据,计算指标,然后给出推荐。用户使用网页查看数据,看可视化报表,定制的自己的需求。
所谓全栈,一般指后端开发和网页开发通吃。我们来分的更细一点,这个项目涵盖这些内容:
我建议分几个步骤去学习:
从技术上,我们只要把别人打包好的Docker文件下载下来,直接运行就行了,不用安装Python,配置各种包。
这里有个例外,一般数据库是需要安装好的,这个项目也是的,需要先自己安装和启动MySQL数据库。
jobs文件夹 - 这个是抓取数据的文件夹,先有数据,才能分析和展示web文件夹 - 这个网站和数据展示部分
下面是我用Docker成功运行项目的步骤:
https://docs.docker.com/get-docker/
https://dev.mysql.com/downloads/
3. 下载最新的Docker文件
docker pull pythonstock/pythonstock:latest
mkdir -p /tmp/data/notebooks #创建临时目录
docker run -itd --name stock
-v /tmp/data/notebooks:/data/notebooks
-p 8888:8888
-p 9999:9999
-e MYSQL_HOST=host.docker.internal # for using Docker-for-mac or Docker-for-Windows 18.03+
-e MYSQL_USER=root
-e MYSQL_PWD=root
-e MYSQL_DB=stock_data
pythonstock/pythonstock:latest
网站系统: http://localhost:9999
用jupyter做分析: http://localhost:8888
系统也支持通过Jupyter做实时的数据分析:
但登录Jupyter需要先获取token:
docker exec -it stock bash
jupyter notebook list
下面这是项目链接,点击查看原文也可以跳转到项目页面:https://github.com/pythonstock/stock
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22