
丽丽在某公司干了3年设计,月薪从6500元涨到7500元,由于工作繁忙,公司新招了个设计,很开心有人分担的她,在某次与新人聊天中郁闷了。
公司竟给新人试用期9000的工资,看到对方的设计不如自己,丽丽十分不舒服,这几年为公司拼死拼活完成任务,就拼了个寂寞。
老员工李哥表示,“刚招的应届生工资竟和自己持平,心里堵得慌,感觉不错的公司突然成了鸡肋。”
阿明是某互联网公司开发,在公司四年多,目前年薪在30万元左右,而同样岗位,今年新入职的刚毕业学生年薪给到了28万了。
——工资倒挂常态化的主要因素
现如今,很多企业都存在薪酬倒挂现象,尤其民营企业已见怪不怪,只是让老员工心寒程度不同罢了。
由于精力和资源有限,那些不在核心岗,又不是骨干的老员工,薪资高低老板根本无暇顾及,甚至可以说根本是件无关紧要的事情。
即便高层领导或老板知道对老员工不公平,但因担心人工成本会涨上去,侵蚀利润,也就默认了。
现实是残酷的,任何企业都不会因为老员工的介意,主动停止这种“工资倒挂”的行为。
只要是职场人,谁都会成为老员工,无法扭转这种现象的发生,面对新进员工工资比自己高,会出现负面情绪很正常。
不过,在这种失衡的心态中滞留太久,对个人和公司的发展都没有益处。
——如何摆脱工资倒挂带来的负面情绪?
既然这里聊的都是老员工,我们就以35岁为一个分水岭,来聊聊具体该怎么做?
如果你离35岁还远
▶ 选择越老越值钱行业,别频繁跳槽,成某领域专家和资深人士,才能确保核心竞争力;
▶ 有一技傍身,如学热门的Python、powerBI等技能,让自己无可取代;
▶ 学理财和规划,手中有存款心中不慌乱,即便给自己放个假也底气十足。
如果你已超过35岁
▶ 拒绝无意义的攀比,不主动聊任何有关薪资方面的话题,否则难受的只会是自己;
▶ 调整自身职业定位,如遭“薪资倒挂”是你的瓶颈,可停下来思考,考虑是否转行等;
▶ 客观合理评价自己,看清优势和劣势,如果选择机会多,此处不留爷自有留爷处;
▶ 努力提升能力水平,学新技能、新知识,不被安逸束缚,成为老板心尖上的人;
▶ 合理用钱和存钱,管住消费欲望,调整财务状况,经济基础就是底气所在。
——哪些行业越老越值钱
再放眼国内,选择好的行业是远离工资倒挂的不二法门,尤其那种朝阳且越老越值钱的行业。
随着科学技术的日新月异,人工智能将取代会计、技工、司机等岗位,但内外科医生、数据分析师、律师、开发工程师等,却无法被冰冷的机器替代。
2020年,全球有7500万工作岗位被人工智能替代,却也衍生出了1.33亿个新的就业岗位。
未来5年,中国大数据行业人才需求总量有望突破2000万。各行各业的就业市场迫切需要多元化的数据分析人才,从而推动数据分析岗具备了薪资高、分工细、路子广,选择多等特征,是远离“工资倒挂”烦恼的绝佳选择。
总而言之,任何持之以恒成为了某一技术线的专家的人,基本都能摆脱“工资倒挂”的困恼,实现“越来越值钱”的职业目标,大家2021年,加油!!
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08