京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最近总有人问我,数据分析师未来的发展前景怎么样?也许很多人都会有这个疑问吧。今天我来为大家解答一下未来数据分析师的发展前景以及在企业中扮演什么样的角色。
在互联网的快速发展下,目前各大公司对数据分析相关岗位的要求持续上升。据统计全国500强企业中,90%以上都建立了数据分析部门。
对于数据分析师来说,所有公司都有数据。他们需要找到一种方法,利用它来分析解决方案,让数据分析提高价值。
1.分析竞争对手
企业想要迅速发展,是一定要了解自己竞争对手的。比如说我们是一家电商公司,那么我们一定要了解竞争对手这个月的主营产品、销售额、折扣优惠等等。这样才有利于我们做好调整,更好的去安排。
2.推广渠道效果监测
当你为企业做广告投放的时候,你是不是需要提前对这些推广渠道的数据进行监测。比如说账号的活跃度、曝光量,只有把这些东西计算好了,你才能预估出这个广告可以为我们带来多首收益。
这个反馈完全可以给以后继续做营销做决定,按效果去调整哪些渠道继续投放广告,哪些渠道砍预算,哪些渠道不投放了。
是一个非常复杂和耗时的过程。这涉及到很多高技术知识。这些公司提供的是一套处理数据摄取、清理、建模和显示的工具。有些人什么都做,有些人只做一部分,这取决于他们想要探索的细分市场。
3.产品的用户群体
当我们一款新的产品上线时,首先要知道店铺里的哪些用户可以首批付费使用,这个和我们的日常监测以及标签有关。平台就可以发信息推送给这类用户,就可以分析出我们的产品用户是否满意,数据分析准不准确了,那里是需要调整的。
企业想有更好的发展就要不断的更新技术,大数据技术将提供最好的数据分析解决方案,而大数据人工智能也逐渐成为了各大企业重点研究方向之一,毕竟人工智能是未来科技发展的必然趋势。
那我们数据分析师需要掌握哪些基础知识呢?
1.Excel:会进行简单的数据处理,一般进入互联网公司会做一些报表,数据处理的工作。这类工作需要和其它技能相结合才有发挥空间,前景可以做行业数据分析。
2.编程和SQL:互联网公司基本都需要,因为互联网的追踪反馈系统很重要,数据分析师在这里扮演的角色就是一个技术—管理层之间的角色,略懂技术,但是也可以大概通过数据得出一点儿结论,给决策层做决策做出有价值的建议。
3.机器学习:这方面的人都是可遇不可求的,但是有一点儿需要搞清楚,人工智能和数据分析师是两个概念,只是使用的工具有交叉,数据分析师一般不会用特别复杂的算法,反而讲究的是快速使用模型并反馈。
数据分析师对于企业来说是非常重要的,无论你是想做行业数据分析,或者是机器学习,前景都是非常好的,不用担心就业问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27