
很多人掌握了大多数的分析工具和技能,仍然做不好数据分析。面对业务时还是会两眼一抹黑,啥也不知道。
做数据分析光靠技能和工具是不够的。还必须拥有数据思维,如何搭配这些分析方法?如何得出结论?
数据粉丝思维究竟是什么样的,我们一起聊一下吧。
1. 对比思维
日常生活中我们常常会遇到,例如今天我去超市看到了7块钱1斤的苹果,但是隔壁却卖6块一斤,你是不是会去隔壁看一下。他们之间有什么区别,为什么会贵出这一元钱。
从这个例子中可以看出,对比通常有两个方向,一个纵向,是指不同类的对比。一个是横向,是指与同类相比。
2.结构思维
很多人在做数据分析的时候没有思路,不知道从何下手,这就是缺少结构化思维的表现。
1.按业务职能结构划分:比如渠道,运营,功能等相关模块,简单快速的沟通,能快速的定位问题原因,但是缺点是分析结果不够直接,依赖外部资源信息搜集。
2.按因果结构划分:通过定位指标波动,定位最细指标,辅助维度下转,能够清楚的问题原因,该方式是较为稳妥的方式,是日常工作中的主要方式,但是缺点是需要构建相对完整的指标逻辑体系。
我们在思考问题的时候,习惯用点对点的方式,想到一点就是一点也就是说是乱打枪,也许有可能你可以凭借着经验找到原因但是大多数情况下,你很难找到完全穷尽的原因,也就是为什么你的数据分析总是没思路。
3.分类对比
这里我们可以划分为客户群体、产品归类、市场分级、绩效评价等,许多事情都需要有分类的思维。到底分类思维怎么应用呢?
关键点在于分类后的事物,需要在核心指标上拉开距离!也就是说分类后的结果,必须是显著的。运营当中关注的核心指标,分类后的对象,你能看到他们的分布不是随机的,而是有显著的集群的倾向。
4.可衡量
好的分析思维,我们要想清楚如何衡量效果?也要考量和现实之间的差距,中间的可操作性。
有想法不会操作:那就学工具、学方法论、学算法,开始先用excel来跑通操作,后面再去学习python。
会操作没有想法:那就学方法论、学思维,好好思考方法论、业务、算法之间的关系。
以上总计了数据分析的4种思维,分别是对比、结构、分类、可衡量,无论是生活还是工作,运用好这些分析方法,相信你一定可以创造出更多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08