京公网安备 11010802034615号
经营许可证编号:京B2-20210330
临近年底的时候,最让人头痛的事情是什么呢?无非就是写各种各样的报告了,对于从事数据分析的同事来说,真tm受罪,更为可怕的是,你辛辛苦苦写了一大堆分析报告,还没人看。
这里,我给大家分析一下,怎样才能把数据分析报告写好。
我想无论做任何报告,背景和目的都是首先要被确认的,背景就是我们是在什么样的情况下进行的,目的就是我们的目标,本年度你的目标完成了多少,这个需要凸显一下。
首先我认为应该从产品和用户的角度来分析:
1.产品角度
(1)分析产品在什么时间段销售量有变化(具体时间可以是季度、月份)。
(2)分析哪些是热销产品,哪些是滞销产品,他们有什么特征。
(3)分析产品可优化的空间。
2.用户角度
(1)分析用户和产品之间的联系。
(2)分析产品的用户画像,例如男女比例、人群分布等等。
成分对比主要体现在对与一个整体的每个部分的百分比的对比。常常出现“份额”、“百分比”等词汇。成分对比通常使用饼图来展现:
(图片来源于网络)
根据自己的产品销售情况,画出不同类目的销售占比,这样让人一目了然。
(图片来源于网络)
1.选择子集
根据上面的分析思路,需要用到:用户ID,商品二级分类,商品一级分类,商品属性,购买数量,购买时间,婴儿生日,婴儿性别,婴儿年龄,将不需要的字段隐藏以便分析。
2.列重命名
为了方便分析,把英文字段改成中文
3.一致化处理
购买的时间都是非标准日期格式,改成标准的。
4.数据排序
按购买时间升序排序
5.异常数值处理
购买数量超过100的全改成1,这次分析主要针对个人,考虑到存在一次买几十个商品的土豪,所以将分界线设为100。
1.店铺销量趋势
销量与成交量和订单量有关。成交量是对商品的成交数量进行统计,订单量是对订单数量进行统计,它们是不同的概念。先从成交量角度分析。
2.订单销售量
3.用户月活、复购率、画像分析
1.店铺的整体复购率低,说明老用户对于店铺的忠诚度不够。
2.活动期间成交量整体提升效果明显,用户也养成习惯,建议继续保持,持续优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27