
相关媒体报道,中国外卖小哥近700万,从学历来看初中生最多,硕士及以上占比仅有1%。但是从数量上来看,硕士学历的外卖员有约7万人,是不是有点点吃惊。
不仅研究生的就业压力大,满大街一抓一大把的本科生同样面临着空前的就业压力。某家企业10个人面试,10个都本科生……当学历不再是你的优势,该如何能提高就业率?
1、“高不成低不就”的尴尬
小西是一枚2020届普通高校硕士,虽不是最热的专业毕业,但是总觉得找份工作应该不会太难。
没曾想,心仪的公司看不上自己,收到offer的公司不想去,就陷入了“高不成低不就”的尴尬境地,怎么破?
而小昊则是某大学本科生,没考研究生,也没有考公务员的打算,只想找一份喜爱的工作持续干下去。
与小西的遭遇一样,干了1年多的工作,让他精疲力尽,动不动就想辞职……不知道你是否也正在或曾经面临过小西和小昊的难题。
2、凭“一技之长”脱颖而出
面对找工作难的困境,专家给出了建议:求职者可适当培养自己的一技之长,来凸显自己的优势,从而获取更多就业的机会。
朋友小兰在一次面试时,虽然没得到那份工作,却邂逅了她十分情有独钟的一技之长。
多方求证后,小兰欣喜的发现,自己的看中的这个技能早已发展为新时代职场的标配技能,它就是如今已开启“野蛮生长”模式的朝阳行业所衍生出来的技能,即:数据分析。
近几年,互联网、金融、咨询、电信、零售、医疗、旅游等行业都迫切需要新型数据分析人才,因此,数据分析被誉为“最性感的技能”。
数据分析不仅是热门,而且能为从业者带来高薪,1-2年工作经验的数据分析师月薪平均可达13k+,且越老越值钱。
3、新时代什么技能可成“一技之长”
未来5年,中国大数据行业人才需求总量预计达2000万,虽各大高校开始纷纷新增相关专业,但仍无法填补,导致数据分析岗高薪却供不应求。
对数据分析人才迫切的市场需求,促使企业更注重数据分析岗从业者的实操能力而非学历,故而行业整体门槛并不苛刻,就业前景较好。
不过,正因缺少学历门槛约束,企业想找到合适且对口的数据分析人才,就不得不依靠行业内长期稳定而形成的高含金量证书。
所以,选择业内认可度高的认证证书,来认证自身的数据分析能力,成为你脱颖而出的筹码。
错过了炒房、牛市、电商、直播……我们千万不要再错过了CDA数据分析师证书。
4、CDA数据分析师认证你的“一技之长”
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试。
Level Ⅱ+Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
报考条件
业务数据分析师 CDA Level I
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
建模分析师 CDA Level II
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
大数据分析师 CDA Level II
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅰ认证证书;
2、本科及以上学历,需从事数据分析相关工作1年以上;
3、本科以下学历,需从事数据分析相关工作2年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
数据科学家 CDA Level III
▷ 报考条件(满足任一即可):
1、获得CDA Level Ⅱ认证证书;
2、本科及以上学历,需从事数据分析相关工作3年以上;
3、本科以下学历,需从事数据分析相关工作4年以上。
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12