京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、稳定的(Non-Volatile)、反映历史变化的(Time Variant)数据集合,用于支持管理决策。
——数据库与数据仓库的区别
数据库和数据仓库其实很相似,都是通过数据库管理系统,来组织、存储和管理数据。 它们的不同之处在于:
数据库是存放原始数据的集合,主要存储业务流程中的事务性数据,如银行交易、订单记录等。 数据仓库是数据库概念的升级,是存放加工处理后的数据集合,主要存储从数据库中整合、汇总后的数据,用于针对某些主题的历史数据进行分析,侧重决策支持。
单从概念上讲有些晦涩,任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例,数据库是银行事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来。数据仓库是分析系统的数据平台,它从事务数据库获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要加设ATM了。 显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是要求时效性的,客户存取一笔钱等待几十秒是无法忍受的,这就要求数据库实时响应。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析结果就达到目的了。
数据库与数据仓库的区别,实际上就是OLTP与OLAP的区别。
基本每个企业都会经历从数据库到数据仓库的阶段,以电商行业为例:
——ETL
数据仓库中的数据通常从多个数据源中提取,整合、汇总后成为数据仓库中的历史记录。多个数据源(内部业务数据库、外部文件、爬虫、第三方API等等)的数据存储方式不同,所以需要经过抽取、清洗、转换。 数据从数据库到数据仓库的处理过程就是ETL(Extract-Transform-Load):
常用的ETL工具:Datastage、Informatica、Kettle
——数据仓库的分层存储
一般来说数据仓库会至少分为ODS、DSA、EDW三个层级,当然层级的名称每个公司可能不同,这里主要是在作用上进行区分解释。
数据仓库的输入就是各种各样的数据源,最终的输出是用来为企业做数据分析、数据挖掘和数据报表。
——常用的数据仓库
Hive是基于Hadoop的数据仓库工具,可以对存储在HDFS上的文件数据集进行查询和分析处理。Hive对外提供了类似于SQL语言的查询语言 HiveSQL,在做查询时将HiveSQL语句转换成MapReduce任务,在Hadoop层进行执行。
HDFS是Hadoop的分布式文件系统,在这里作为数据仓库的存储层。图中的Data Node就是HDFS的众多工作节点。
MapReduce是一种针对海量数据的并行计算模型,可以简单理解为对多个数据分片的数据转换和合并。
Teradata数据仓库配备性能最高、最可靠的大规模并行处理 (MPP) 平台,能够高速处理海量数据,其性能远远高于Hive。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10