京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、稳定的(Non-Volatile)、反映历史变化的(Time Variant)数据集合,用于支持管理决策。
——数据库与数据仓库的区别
数据库和数据仓库其实很相似,都是通过数据库管理系统,来组织、存储和管理数据。 它们的不同之处在于:
数据库是存放原始数据的集合,主要存储业务流程中的事务性数据,如银行交易、订单记录等。 数据仓库是数据库概念的升级,是存放加工处理后的数据集合,主要存储从数据库中整合、汇总后的数据,用于针对某些主题的历史数据进行分析,侧重决策支持。
单从概念上讲有些晦涩,任何技术都是为应用服务的,结合应用可以很容易地理解。以银行业务为例,数据库是银行事务系统的数据平台,客户在银行做的每笔交易都会写入数据库,被记录下来。数据仓库是分析系统的数据平台,它从事务数据库获取数据,并做汇总、加工,为决策者提供决策的依据。比如,某银行某分行一个月发生多少交易,该分行当前存款余额是多少。如果存款又多,消费交易又多,那么该地区就有必要加设ATM了。 显然,银行的交易量是巨大的,通常以百万甚至千万次来计算。事务系统是要求时效性的,客户存取一笔钱等待几十秒是无法忍受的,这就要求数据库实时响应。而分析系统是事后的,它要提供关注时间段内所有的有效数据。这些数据是海量的,汇总计算起来也要慢一些,但是,只要能够提供有效的分析结果就达到目的了。
数据库与数据仓库的区别,实际上就是OLTP与OLAP的区别。
基本每个企业都会经历从数据库到数据仓库的阶段,以电商行业为例:
——ETL
数据仓库中的数据通常从多个数据源中提取,整合、汇总后成为数据仓库中的历史记录。多个数据源(内部业务数据库、外部文件、爬虫、第三方API等等)的数据存储方式不同,所以需要经过抽取、清洗、转换。 数据从数据库到数据仓库的处理过程就是ETL(Extract-Transform-Load):
常用的ETL工具:Datastage、Informatica、Kettle
——数据仓库的分层存储
一般来说数据仓库会至少分为ODS、DSA、EDW三个层级,当然层级的名称每个公司可能不同,这里主要是在作用上进行区分解释。
数据仓库的输入就是各种各样的数据源,最终的输出是用来为企业做数据分析、数据挖掘和数据报表。
——常用的数据仓库
Hive是基于Hadoop的数据仓库工具,可以对存储在HDFS上的文件数据集进行查询和分析处理。Hive对外提供了类似于SQL语言的查询语言 HiveSQL,在做查询时将HiveSQL语句转换成MapReduce任务,在Hadoop层进行执行。
HDFS是Hadoop的分布式文件系统,在这里作为数据仓库的存储层。图中的Data Node就是HDFS的众多工作节点。
MapReduce是一种针对海量数据的并行计算模型,可以简单理解为对多个数据分片的数据转换和合并。
Teradata数据仓库配备性能最高、最可靠的大规模并行处理 (MPP) 平台,能够高速处理海量数据,其性能远远高于Hive。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26