京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在日常工作中遇到简单的业务问题,可以直接查看数据进行验证并解决,但遇到复杂的问题时,可能看到数据都无从下手,拿到数据也看不出什么问题。
下面介绍几种常见又比较通用的数据分析方法,希望这些分析方法能够成为你进行数据分析和解决业务问题的利器。
在数据分析工作中,你可能经常遇到这样的问题:从浏览到消费的转化率一直很低,那到底该优化哪里呢?如果你要投放广告该怎么选择对象人群呢?
遇到类似的问题,我们需要将具体的业务问题和数据之间建立一种关系,然后通过一些分析方法和分析工具,让我们在遇到此类问题时知道:我该选择什么样的分析工具或分析方法去解决实际业务中的问题。
对比分析法
俗话说:没有对比就没有伤害。数据分析的最终目的是对现实的情况或一个功能的好坏做评估,这里最常用的方法就是对比分析法啦。 接下来介绍对比分析法中的三个问题:比什么?如何比?跟谁比?
——比什么
1.绝对值
绝对值是本身就具备价值的数字 ,比如:电商平台的销售金额、公众号的阅读数等。当然,如果只看绝对值,是无法得知事情严重到什么程度的。
2.比例值
在具体环境中看比例值才具备对比价值,比如:电商平台的详情页转化率,复购率等。需要注意的是:比例值是一个除法计算,很容易把数量级的一些数字给忽略了,比如说:85除100和85000除100000得到的都是同样的值。
——如何比
1.环比
环比是与当前时间范围相邻的上一个时间范围对比。 以下图为例:如果是日环比,则是拿星期二的数据与星期一的数据比,同理,周环比呢,则是拿本周的数据和上一周的数据对比,那月环比自然也是拿本月的数据与上一个月的数据对比了。
环比适合分析短期内具备连续性数据的业务场景。
举个栗子:比如说我们要做一个为期10天促销活动,在做这个活动的过程中,每天都会去观察活动的效果,根据前一天的活动效果来优化后面的活动过程,而这个活动之前没有做过,没法与以前的活动效果进行对比,这个时候就要看日环比数据了。 环比适用于根据相邻时间范围的数字对当前时间范围的指标进行设定。
比如给我们的产品设定每月新增用户为100000,但是第一月我们只做到10000,第二个月只做到12000,那我们就需要跟据前面两月的实际情况进行对比,调整第三个月及之后的目标了。
2.同比
同比是与当前时间范围上层时间范围的前一范围中同样位置数据对比。 举个栗子:今天是4月16日(当前时间范围),月同比就是选择3月16日来同4月16日进行同比计算。
同比的使用场景有:打赏的流水、销售流水等。像旅行、餐饮、骑行这些会受季节性影响的产品,会拿今年的这个日/月或一个时间段跟去年的同期进行比较。
同比更适合去观察长期的数据集。
举个栗子:公司每年都会进行“双十一”大促,这个时候我们对比数据时可以把今年的同去年的,或者去年同前年的数据进行对比。
同比适用于观察的时间周期里有较多干扰,而我们希望某种程度上消除这些干扰。比如说短视频类的产品,是不是需要考虑工作日和周末以及其他节假日呢。
——和谁比
1.和自己比
时间维度:拿昨天跟前天比,拿这个星期跟上个星期比(环比、同比)等等。 不同业务线:跟公司不同的业务线进行对比,比如说做线上汽车交易的,拿新车和二手车比。
二手车数据涨跌厉害,那新车有这种情况吗?
往期均值:这里不同于时间维度,像留存、销售额、日活这些都是比较连续的数据,每天都会产生新的指标。但是有很多事情不是连续性的,它不会每天都产生数据,这个时候就要根据往期这些数据的均值进行对比。
2.各行业比
在实际的业务中,如果跟自己比找不到原因,那么就需要跟行业比,看是自身的原因,还是行业的趋势导致的跌或者涨。
都跌:如果都跌,咱能不能比同行跌得少? 举个栗子:A公司的跌了10%,咱们公司跌了30%,那么在这个相对竞争的环境中,咱跌的是更多的,通过这样的对比,就可以找到原因并解决这个问题。
都涨:如果都涨,咱能不能比同行涨得快? 都涨也是一样的道理,如果A公司涨了30%,咱们只涨了10%,也能找到原因,并给出解决方案。因为如果不这样做,那么相对于竞争对手而言,咱还是在跌的。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29