作者:豌豆花下猫
来源:Python猫
在写 python 项目的时候,我们可能经常会遇到导入模块失败的错误:ImportError: No module named 'xxx'或者ModuleNotFoundError: No module named 'xxx'。
导入失败问题,通常分为两种:一种是导入自己写的模块(即以 .py 为后缀的文件),另一种是导入三方库。本文主要讨论第二种情况,今后有机会,我们再详细讨论其它的相关话题。
解决导入 Python 库失败的问题,其实关键是在运行环境中装上缺失的库(注意是否是虚拟环境),或者使用恰当的替代方案。这个问题又分为三种情况:
一、单个模块中缺失的库
在编写代码的时候,如果我们需要使用某个三方库(如 requests),但不确定实际运行的环境是否装了它,那么可以这样:
try: import requests except ImportError: import os os.system('pip install requests') import requests
这样写的效果是,如果找不到 requests 库,就先安装,再导入。在某些开源项目中,我们可能还会看到如下的写法(以 json 为例):
try: import simplejson as json except ImportError: import json
这样写的效果是,优先导入三方库 simplejson,如果找不到,那就使用内置的标准库 json。
这种写法的好处是不需要导入额外的库,但它有个缺点,即需要保证那两个库在使用上是兼容的,如果在标准库中找不到替代的库,那就不可行了。
如果真找不到兼容的标准库,也可以自己写一个模块(如 my_json.py),实现想要的东西,然后在 except 语句中导入它。
try: import simplejson as json except ImportError: import my_json as json
二、整个项目中缺失的库
以上的思路是针对开发中的项目,但是它有几个不足:1、在代码中对每个可能缺失的三方库都 pip install,并不可取;2、某个三方库无法被标准库或自己手写的库替代,该怎么办?3、已成型的项目,不允许做这些修改怎么办?
所以这里的问题是:有一个项目,想要部署到新的机器上,它涉及很多三方库,但是机器上都没有预装,该怎么办?
对于一个合规的项目,按照约定,通常它会包含一个“requirements.txt ”文件,记录了该项目的所有依赖库及其所需的版本号。这是在项目发布前,使用命令pip freeze > requirements.txt 生成的。
使用命令pip install -r requirements.txt (在该文件所在目录执行,或在命令中写全文件的路径),就能自动把所有的依赖库给装上。
但是,如果项目不合规,或者由于其它倒霉的原因,我们没有这样的文件,又该如何是好?
一个笨方法就是,把项目跑起来,等它出错,遇到一个导库失败,就手动装一个,然后再跑一遍项目,遇到导库失败就装一下,如此循环……(此处省略 1 万句脏话)……
三、自动导入任意缺失的库
有没有一种更好的可以自动导入缺失的库的方法呢?
在不修改原有的代码的情况下,在不需要“requirements.txt”文件的情况下,有没有办法自动导入所需要的库呢?当然有!先看看效果:
我们以 tornado 为例,第一步操作可看出,我们没有装过 tornado,经过第二步操作后,再次导入 tornado 时,程序会帮我们自动下载并安装好 tornado,所以不再报错。
autoinstall 是我们手写的模块,代码如下:
# 以下代码在 python 3.6.1 版本验证通过 import sys import os from importlib import import_module class AutoInstall(): _loaded = set() @classmethod def find_spec(cls, name, path, target=None): if path is None and name not in cls._loaded: cls._loaded.add(name) print("Installing", name) try: result = os.system('pip install {}'.format(name)) if result == 0: return import_module(name) except Exception as e: print("Failed", e) return None sys.meta_path.append(AutoInstall)
这段代码中使用了sys.meta_path ,我们先打印一下,看看它是个什么东西?
Python 3 的 import 机制在查找过程中,大致顺序如下:
其中要注意,sys.meta_path 在不同的 Python 版本中有所差异,比如它在 Python 2 与 Python 3 中差异很大;在较新的 Python 3 版本(3.4+)中,自定义的加载器需要实现find_spec方法,而早期的版本用的则是find_module。
以上代码是一个自定义的类库加载器 AutoInstall,可以实现自动导入三方库的目的。需要说明一下,这种方法会“劫持”所有新导入的库,破坏原有的导入方式,因此也可能出现一些奇奇怪怪的问题,敬请留意。
sys.meta_path 属于 Python 探针的一种运用。探针,即import hook,是 Python 几乎不受人关注的机制,但它可以做很多事,例如加载网络上的库、在导入模块时对模块进行修改、自动安装缺失库、上传审计信息、延迟加载等等。
限于篇幅,我们不再详细展开了。最后小结一下:
参考资料:
https://github.com/liuchang0812/slides/tree/master/pycon2015cn
http://blog.konghy.cn/2016/10/25/python-import-hook
https://docs.python.org/3/library/sys.html#sys.meta_path
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03