
作者:丁点helper
来源:丁点帮你
前文我们详解过线性回归,也初步介绍了生存分析所涉及的生存数据,明白了:做生存分析最特殊的一点是分析时要纳入研究对象的“生存时间”,更一般的是指:出现某种特定结局的时间。今天的文章,我们更进一步地来学习如何看懂生存函数和生存曲线。
生存概率和死亡概率
在进入正题之前,我们需要首先明确两个概念:生存概率与死亡概率。
1. 生存概率(survival probability),用p表示,是指某时段开始时存活的个体,到该时段结束时仍存活的可能性。
说起来好像有点儿吓人,但是计算起来很简单:
2. 死亡概率(probability of death),与生存概率相对, 用 q 表示,指某时段开始时存活的个体,在该时段内死亡的可能性。如年死亡概率表示年初尚存人口在今后1年内死亡的可能性。
p + q = 1。
介绍完这两个基础概念后,我们来看看什么叫生存函数(survival function)。
生存率
教科书的定义是:生存函数表示观察对象的生存时间T大于某个时间的概率,常用 S(t)表示。
生存函数又称为累积生存率,简称生存率(survival rate)。例如,前文谈到的肺癌患者,其生存函数可以写作:
代表患者治疗后存活时间大于18个月的概率,该值越大表明治疗的疗效越好。这里有一个点很容易混淆,S(t)表示生存率,而前面我们用p代表的是生存概率。一个是生存率,另一个是生存概率,难道不是一回事儿吗?
还真不是!生存率与生存概率虽然一字之差但定义却不大相同(当然两者也存在联系)。
还是上面的T=18的例子,对于生存率和生存概率,我们可以分别这样来写:
生存率:S(t=18)=P(T>18)
生存概率: P(t=18)=P(T=18)
看上面的式子,生存率的计算是用“>”,而生存概率的计算是“=”。由此,生存概率是指单位时间上生存的可能性,生存率是某个时间段(由一个或多个单位时间组成的时间段)生存的可能性,是多个单位时间生存概率的累计结果。
比如评价肺癌治疗后3年的生存率,是指第一年存活,第二年存活,直至第三年仍然存活的累积概率,而这3年间每一年都会有不同的生存概率,两者之间的关系如下图:
数学上,生存率和生存概率也有如下的计算关系:
生存曲线
除了计算某个时刻(从开始到该时刻的整个时间段)的生存率之外,我们还可以利用图示法更加直观地描述生存率随生存时间的变化而变化。
下图即为根据某项研究制定的生存曲线:横轴是生存时间,纵轴是生存率。
如上图,我们可以发现,当T=11.124时,对应的生存率是0.5。
随着时间的延长,部分患者死亡,从而导致生存函数的值会逐渐降低。从图形上看,当时间趋于无穷大时,生存函数的值趋于0,意味着,长远来看,每位患者的生存时间都是有限的,不可能无限活下去。
在实际应用中如何来估算生存率呢?也很简单,若数据中无删失值(不懂什么是删失,戳此阅读),某时刻的生存率可用下式估计(有删失的情况要更复杂一些):
一般而言,生存分析的主要应用如下:
1.描述生存时间的分布特点。通过生存时间和生存结局的数据估计平均存活时间及生存率,绘制生存曲线,根据生存曲线分析其生存特点等。
2.比较生存曲线。通过相应的假设检验方法对不同样本的生存曲线进行比较,以推断各总体的生存状况是否存在差别,比较不同治疗方法预后效果的差异。
3.分析影响生存状况的因素。通过生存分析模型来探讨影响生存状况的因素,通常以生存时间和结局作为因变量,而将可能的影响因素作为自变量,通过拟合生存分析模型,筛选具有统计学意义的生存状况的影响因素。
具体在实际应用中如何进行生存函数的估计而实现上述应用,这就是我们下篇文章将要给大家带来的内容了。
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15