
大数据:物流掘金的新武器
当前,大数据应用的风潮,正盛行于各行各业。许多具有前瞻战略眼光的企业,已然通过大数据的武装,形成了区别于同行的核心竞争力。那么,对于物流行业而言,大数据应用究竟有着怎样的价值?
从一些案例中,简单地阐述三类大数据在物流行业中的应用模式:
一是,自建物流的企业基于生产或销售的预测对物流活动的指导。因为,在自建物流的关系中,物流部门可以获得更多的数据资源。在大数据的支持下,一些看似没有意义的数据也能为物流活动提供指导作用。例如,美国亚马逊公司早在2008年就实现了通过分析网页浏览量和货物购买的关系,预测商流发生的时间和地点。亚马逊的物流部门则在交易未产生之前,就能将货物运往目的地附近,从而大大提高了物流服务水平。
二是,第三方物流公司采集车辆内数据指导运输。大型第三方物流企业往往拥有很多的车辆,每天车辆油耗的费用就十分庞大。对此,UPS正在开展一个项目,即通过侦测UPS配送车辆上的地理位置信息、装载率、货物类型等实时信息,通过大数据分析能力整合这些信息,为司机提供合理的、优化的路线安排,而此项目在实验地区已经为UPS节约了数十万美元的燃油费用。
三是,电商企业牵头,物流企业入股,通过共享数据指导物流活动。由于物流企业之间存在着严重的竞争关系,所以大家都不肯轻易地共享自己的数据。而通过各自控股的方式,可以更好的共享数据。例如,阿里巴巴公司联合五大快递企业成立了“菜鸟网络”,推出了全新的物流数据雷达服务。物流数据雷达将可以提供详细的区域和网点预测,不仅可以监控到中转站,还可以监控到行政县区及服务网点的层面。这些数据不仅可以更加客观地帮助电商平台和快递企业做出决策,同时还便于通过线路预测帮助各大快递企业分拨不爆仓,并有利于提升快递“最后一公里”的服务质量。此外,通过数据雷达,商家也能更加清楚地实现物流订单管理,揽收率、在途率、签收率等一目了然;同时,商家还可以针对不同情况采取对应的措施,如长期在途订单的消费者关怀,已签收用户的售后服务,快递异常情况的主动跟进和协调处理等等。
由此可见,大数据给物流行业带来的直接效果就是降低物流成本,大大提高物流业的社会效益。仅凭此一点就可以断定,大数据的应用在物流业中将有巨大的发展空间。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策的扶持下,大数据的应用将成为未来物流业发展的主流趋势。
首先,应用大数据可以帮助物流企业开发物流领域的“黑大陆”。如果人们能够掌握物流活动过程中的全部数据,那么,所谓的物流“黑大陆”将不复存在;而如果能够充分分析和挖掘这些数据的价值,那么,则可以有效地帮助我们找到物流市场的潜力所在。
第二,应用大数据可以帮助物流企业做出正确的决策。在物流领域中,成本和效率一直都是难以同时兼顾的。但通过数据分析,可以让物流企业看到具体的业务运行情况,清楚地判断未来业务发展方向,从而有助于物流企业更加专注于核心业务,提升自身的竞争能力;同时,通过对实时数据的掌控,物流企业还可以即时对业务进行调整,确保业务板块都可以赢利,从而实现非常高效的运营。
鉴于以上优势作用,加强对大数据的进一步研究与应用,将是带动整个物流行业实现升级与跃进,打造社会化、节约化、标准化的新物流服务链,以及全方位提升我国物流业服务水平、信息化水平的必由之路。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策下,我们更应该强化大数据应用,提升大数据能力,推进大数据在物流行业中的快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29