京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:物流掘金的新武器
当前,大数据应用的风潮,正盛行于各行各业。许多具有前瞻战略眼光的企业,已然通过大数据的武装,形成了区别于同行的核心竞争力。那么,对于物流行业而言,大数据应用究竟有着怎样的价值?
从一些案例中,简单地阐述三类大数据在物流行业中的应用模式:
一是,自建物流的企业基于生产或销售的预测对物流活动的指导。因为,在自建物流的关系中,物流部门可以获得更多的数据资源。在大数据的支持下,一些看似没有意义的数据也能为物流活动提供指导作用。例如,美国亚马逊公司早在2008年就实现了通过分析网页浏览量和货物购买的关系,预测商流发生的时间和地点。亚马逊的物流部门则在交易未产生之前,就能将货物运往目的地附近,从而大大提高了物流服务水平。
二是,第三方物流公司采集车辆内数据指导运输。大型第三方物流企业往往拥有很多的车辆,每天车辆油耗的费用就十分庞大。对此,UPS正在开展一个项目,即通过侦测UPS配送车辆上的地理位置信息、装载率、货物类型等实时信息,通过大数据分析能力整合这些信息,为司机提供合理的、优化的路线安排,而此项目在实验地区已经为UPS节约了数十万美元的燃油费用。
三是,电商企业牵头,物流企业入股,通过共享数据指导物流活动。由于物流企业之间存在着严重的竞争关系,所以大家都不肯轻易地共享自己的数据。而通过各自控股的方式,可以更好的共享数据。例如,阿里巴巴公司联合五大快递企业成立了“菜鸟网络”,推出了全新的物流数据雷达服务。物流数据雷达将可以提供详细的区域和网点预测,不仅可以监控到中转站,还可以监控到行政县区及服务网点的层面。这些数据不仅可以更加客观地帮助电商平台和快递企业做出决策,同时还便于通过线路预测帮助各大快递企业分拨不爆仓,并有利于提升快递“最后一公里”的服务质量。此外,通过数据雷达,商家也能更加清楚地实现物流订单管理,揽收率、在途率、签收率等一目了然;同时,商家还可以针对不同情况采取对应的措施,如长期在途订单的消费者关怀,已签收用户的售后服务,快递异常情况的主动跟进和协调处理等等。
由此可见,大数据给物流行业带来的直接效果就是降低物流成本,大大提高物流业的社会效益。仅凭此一点就可以断定,大数据的应用在物流业中将有巨大的发展空间。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策的扶持下,大数据的应用将成为未来物流业发展的主流趋势。
首先,应用大数据可以帮助物流企业开发物流领域的“黑大陆”。如果人们能够掌握物流活动过程中的全部数据,那么,所谓的物流“黑大陆”将不复存在;而如果能够充分分析和挖掘这些数据的价值,那么,则可以有效地帮助我们找到物流市场的潜力所在。
第二,应用大数据可以帮助物流企业做出正确的决策。在物流领域中,成本和效率一直都是难以同时兼顾的。但通过数据分析,可以让物流企业看到具体的业务运行情况,清楚地判断未来业务发展方向,从而有助于物流企业更加专注于核心业务,提升自身的竞争能力;同时,通过对实时数据的掌控,物流企业还可以即时对业务进行调整,确保业务板块都可以赢利,从而实现非常高效的运营。
鉴于以上优势作用,加强对大数据的进一步研究与应用,将是带动整个物流行业实现升级与跃进,打造社会化、节约化、标准化的新物流服务链,以及全方位提升我国物流业服务水平、信息化水平的必由之路。特别是在《关于运用大数据加强对市场主体服务和监管的若干意见》利好政策下,我们更应该强化大数据应用,提升大数据能力,推进大数据在物流行业中的快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27