京公网安备 11010802034615号
经营许可证编号:京B2-20210330
科学防大火大数据消防是未来趋势
当前,我国已经建立起来一套较为完整和健全的消防安全体系,一是我们已经拥有了较为先进的消防设备和器材,二是消防通讯也建立了快捷、准确的通道,三是消防官兵训练有素,在火灾发生时能够做到出警迅速。但是,在面对消防实战、消防正确安全防护设施布置、消防通道准确选择、消防救援协同合作方式等方面仍存在一定的问题。而大数据能够将看似毫无关联的数据进行整合,从中挖掘出各项数据的关联,为消防体系建设提供正确指引,并以驱动型消防方式科学构建消防联动机制,当火灾发生时能够做到及时响应、正确引导、快速灭火等一系列消防部署。同时,能够对城市火灾易发区进行实时监控,全方位做好消防防范措施。

一、大数据在消防体系中的应用
在消防体系建设中已经初见大数据应用,其主要体现在火灾模拟、火灾自动报警、消防装备信息化和消防管理网络化四个方面。
(一)火灾模拟在现代化消防训练中,利用火灾大数据建立的火灾模拟消防训练系统,一方面可以解决消防训练中难以达到真实性的效果问题;另一方面,采用3D技术还原各类型火灾现场,让消防人员更加真实的感受火灾规律,找出科学控制火灾的方法。
(二)火灾自动报警自动化火灾报警系统是在区域内建立火灾预警网络,将各个社区、商场、人员密集区域的火灾感应设备与消防监控中心联网,第一时间将火情信息报送到消防支队,让消防员能够及时到位消除火灾。这种方式相比传统通过人工拨打119电话更加迅速,更加准确。
(三)消防设备信息化如今的消防设备是集电子技术、网络技术、通信技术等于一体的信息化与器材的结合体,这让我们的消防员在灭火过程中更加得心应手,通过大数据网络可以辅助消防员揪出可能仍然残留的火灾隐患,不留任何死角。
(四)消防管理网络化在大数据体系下,消防监督、通讯指挥调度、灭火方案制定、交通安全疏导、消防安全教育、后勤管理等以结构化、网络化的方式串联在一起,利用计算机网络技术、通讯技术、数据分析技术等进行网络化管理。
二、大数据在消防工作中应用的重要性
现代化消防将信息技术、电子技术综合运用,提升消防信息化和科技化的水平。大数据具有数据量大、数据类别多、数据处理速度快、数据结果准确性高的特点,通过信息共享平台,让我们消防部队能够将现有资源进行整合与共享,通过建立基础数据库,将各种结构的信息进行转换和关联,以提高消防情报的准确判断和增强消防业务协同能力。在大数据时代,各种类型的信息都可能成为消防工作的关键数据,现代化消防队伍的建设,就是要将所有类型的数据进行整合挖掘,提高消防工作的准确判断力,辅助消防体系规范化、科学化建设,以此达到消防工作有的放矢,全面开展的目的。
三、基于大数据的消防体系建设
随着云计算、大数据的应用领域逐渐延伸,在消防工作领域,应用大数据推进消防体系标准化、结构化、完善化发展,对于消防工作来讲势在必行。
(一)大数据消防救援预测分析系统大数据消防救援预测分析系统是根据历年来的火灾数据、救援数据、社会救助数据等进行走势分析,能够为消防救援工作提供准确的方案制定,在出现火情时,及时做出火灾类型判断和救援预测,选择最优方案进行救援,将火灾损失降到最低点。同时,大数据消防救援预测分析系统能够对火灾的发生原因进行预测,辅助现场指挥人员做出正确的救援方案,减少消防伤亡,提高消防效率。
(二)大数据动态火灾救援系统大数据动态火灾救援系统是根据火灾的动态信息,进行火灾发生地周围的消防部署,快速调集距离火灾最近的消防大队,并分析出最优救援线路,辅助消防119指挥中心作出迅速的火灾救援力量,达到迅速出警、快速扑救。此外,大数据动态火灾救援系统能够对火灾的发展事态进行准确分析,合理调用消防资源,做到资源的最优匹配,并根据实际情况做好后援力量,保证火灾在可控范围之内。
(三)重点火患地区大数据评估系统在重点火患地区,对火灾事故发生地的周边危险易燃易爆品区域进行定位,以做到提示火灾现场指挥人员做好人员的疏散与火灾扩大化的防范。在此过程中,利用大数据进行向量分析,做出准确的危险评估,科学的做好人力资源的调配与危险品的管理。
(四)大数据神经网络消防等级评估系统大数据神经网络消防数据挖掘是对消防危险源的危险等级进行评估,分析火灾危险发生概率和波及范围,动态的分析各个重点区域消防建设的走势图,根据不同区域的火灾易发率和消防力量集结情况进行综合分析,以评价出区域消防等级,为有限的消防力量发挥出无限的消防作用做出最好的配比。
(五)大数据智能分析匹配系统消防大数据中,具有海量的消防人员、消防设备、消防情报信息,将这些信息进行智能分析,合理匹配,满足消防业务对大数据的深层需求,使消防指挥工作更加科学,发挥出消防大数据的最大利用价值。大数据智能分析匹配系统利用了大数据的结构化数据和非结构化数据之间的关联关系,在消防力量的分配方面具有极高的准确性,其对消防资源的充分利用具有极大的价值。
随着科学技术不断的发展,在消防信息化建设中,消防一体化已经成为未来的发展趋势,而在大数据的功能下,建立消防大数据基础数据库,形成多结构、多方面、多体系的海量数据,并采用大数据分析工具和大数据挖掘系统,对消防业务进行准确的分析和判断,为消防体系建设提供最有效途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16