
spss稳健性检验步骤_稳健性检验的方法spss_spss稳健性检验怎么做
SPSS中进行稳健性检验一般都用什么方法
稳健性估计一般针对于异方差的,SPSS要处理异方差要先对构建的模型进行诊断,看散点图虽然直观但有时也不好明确是否存在异方差,要是看检验统计量的话还要手工进行计算很麻烦。所以涉及到内生性、异方差等问,SPSS能做的可能就有限了。这时一般寻求eviews或Stata等更专业的软件。比如stata要得到模型的稳健性估计结果,直接在模型语句后面加一个robust就完事了,而SPSS则很麻烦。这种条件下如果非要由SPSS做,建议有二:一是诊断模型是否存在异方差;二是如果存在异方差,那么模型就用加权最小二乘法进行估计。
稳健性检验的方法spss
相关性检验与稳健性检验问题
(一)在做相关性检验时,某自变量指标与因变量正相关,而在多元回归分析时得出的结果是负相关,这是怎么回事?还有某自变量指标与因变量指标显著,但是在多元回归时又不显著,这是为什么?
(二)稳健性检验应该怎么做?有哪些方法啊?控制变量换一些含义相同的指标算不算稳健性检验?
spss稳健性检验的方法
稳健性检验检验的是实证结果是否随着参数设定的改变而发生变化,如果改变参数设定以后,结果发现符号和显著性发生了改变,说明不是robust的,需要寻找问题的所在。
一般根据自己文章的具体情况选择稳健性检验:
1. 从数据出发,根据不同的标准调整分类,检验结果是否依然显著;
2. 从变量出发,从其他的变量替换,如:公司size可以用total assets衡量,也可以用total sales衡量;
3. 从计量方法出发,可以用OLS, FIX EFFECT, GMM等来回归,看结果是否依然robust;
如何用spss进行秩和检验,具体操作步骤
spss秩和检验操作步骤:
1、非参数检验,两个或多个独立样本,2个就进入2个的菜单,是多个就进入多个的菜单。
2、秩和检验是把不正态的正态的数据转换为等级对多组进行比较,就像非参数中的方差分析或t检验。卡方检验的范围就广多了,如果是非参数检验里的第一个“卡方检验”,则只是看在一种单一的情况下不同分类属于哪种分布。
补充数据的情况:如是T1-T7只是样本编号,用秩和检验就可以比较A、B、C三种琼脂对某药物抑制大肠杆菌的影响。
怎样用spss做方差同质性检验
无论是单因素的方差分析,还是多因素的方差分析,你可以先打开方差分析的对话框,然后点选“选项”按钮,在弹出的对话框里有方差齐性检验的选项,勾选即可。 方差齐性与否看方差齐性F检验的结果就可以,如果sig值大于0.05,就是齐性,适合做方差分析。 按说不齐性是不可以进行后续的方差分析的,因为在均值检验中(包括方差分析,T检验等)各个实验处理的效应被认为是一种固定效应,对所有人的作用一样,也就是说,处理的作用就是给每个人原来的的水平加上一个相同的常数,这样的话,每个被试组原来什么方差,实验处理后还是什么方差,那么,如果不同被试组的方差不齐性,也就是方差之比显著不等于1,就说明被试之间原本就差异很大,那我们的方差分析就得不到准确的结论,不知道究竟是实验处理造成了不同被试组间的差异,还是说这里面也混淆了个体差异。 方差不齐性,原则上不能进行方差分析,但spss里的方差分析是在最小二乘法的框架下做的,和教育及心理统计教材中介绍的方差分析的分析方式不太一样,好处是这样的方差分析比较稳健,对于方差齐性的问题不敏感,即使违反了,也还是能用,结果也还是比较可信的。在spss里面齐性并不是方差分析的必要条件。只不过教材是为了给你介绍大概原理,而且对最新的软件的性能也不是非常了解,所以非要齐性。况且做方差分析的论文里面一般也不会报告齐性检验。所以你就直接用方差分析就行了。 如果还是不放心,可以做一些数据转换,使其接近齐性,比如box—cox转换,对数转换等等。
spss方差同质性检验追问:
但是方差齐性检验是不能超过50个组的,我的数据有180个+_+
spss方差同质性检验追答:
方差齐性检验好像没有组的限制,因为只是方差最大组和最小组相比。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15