京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是电力行业未来发展核心
在全球新一轮科技革命和产业变革中,以云计算、大数据为代表的信息技术,与智能电网为代表的电力技术高度融合,将构建能源发展的新格局、激发经济增长的新活力、开启社会美好新生活、开启人类文明的新篇章。
今年8月,国务院公布了《"十三五"国家科技创新规划》,规划提到了9大重点工程,包括种业自主创新、煤炭清洁高效利用、智能电网、天地一体化信息网络、大数据、智能制造和机器人、重点新材料研发及应用、京津冀环境综合治理和健康保障。其中多个工程与能源电力相关。

电力大数据是电力行业的重点研究领域。美国电科院早在2012年就启动智能电网数据研究项目,研究在输配电上的大数据应用;美国太平洋燃气电力公司、加拿大的电力公司也基于用户用电数据开展了大数据技术应用研究;美国一家能源及排放管理公司与IBM公司合作开发,2014年发布了针对智能电网的大数据分析系统;2014年4月,Oracle数据库管理系统又提出了智能电网大数据公共数据模型。
法国、德国、英国、加拿大等国外电力公司则通过安装智能电表,对用户用电数据进行实时测量,计算出合理的用电消费计划并推荐给用户。
2013年,中国电机工程学会发布了《电力大数据发展白皮书》,国家科技部2014年下达了3项863项目,支持智能电网大数据研究。自2012年以来,国家电网公司启动了多项智能电网大数据研究项目,如江苏省电力公司于2013年初率先开始建设营销大数据智能分析系统,开展了基于大数据的客户服务新模式应用开发研究;北京市电力公司等也正在积极推进营配数据一体化基础上的智能电网大数据应用研究。
目前,国家电网公司全网入池服务器总数量5000多台,初步实现全网资源池的统一视图和资源基本可控、可调,是国内最大的企业基础设施私有云,节省了大量的服务器采购成本、机房空间和运维成本。
从近年来电力行业信息化发展趋势来看,电力大数据已成为电力行业发展的核心。主要体现在以下几个方面:
第一,云计算、大数据与智能电网都与国家未来的发展战略密切相关。云计算、数据和智能电网的研究都已经被列入国务院2015年发布的《关于积极推进"互联网+"行动的指导意见》。大数据和智能电网还被列入了《"十三五"国家科技创新规划》的9大重大工程项目。
第二,企业私有云和混合云将成为未来云计算的主要发展方向。国网信通产业集团下属中电普华信息技术有限公司在国家"十二五"建设期间,在企业云平台建设方面已经取得丰硕的成果,所开发的"国家电网软硬件资源池"和"云资源管理平台"项目,已经在国家电网总部及27个国家电网省电力公司得到了全面的部署。
第三,电力大数据既是云计算上的主要应用,又为云计算发展提供了新的动力。智能电网提供的电网运行数据和海量用户数据,为电力大数据分析提供了坚实的基础。
第四,全球能源互联网能够让我们跳出地球看地球。如果我们能够把世界上最大的三个电网:美国电网、欧洲电网和中国电网联结起来,就能够实现美国、欧洲和中国三大区域的电力自动调度和削峰填谷,为解决全世界的能源短缺、气候变暖及环境污染等问题打下坚实的基础。
在当前科技飞速发展的时代,以"大云物移"为代表的最新科技正引领国家信息技术的发展方向,并推动全球能源互联网的迅猛发展,成为传统产业升级和新兴产业发展的核心动力。
根据国家"一带一路"发展战略,国家电网公司提出了建设全球能源互联网的宏伟构想。建设网架坚强、广泛互联、高度智能、开放互动的全球能源互联网,需要广泛应用"大云物移"等新技术。
电力大数据能够为电力行业带来效益上的提升。2012年,美国智能电表的运作台数为1.39亿台,2020年将达到3.77亿台。美国德克萨斯州能源公司服务2000万居民,推出了智能电表技术为客户带来现实利益,客户通过现金返还计划获得3000万美金。大数据在智能电网上的应用使美国每年能耗降低10%,每年节省800亿美元新建电厂的费用。
数字化和云化正在改变着我们的工作和生活,也在改变现有的商业模式。数字化与云化转型和成为数字化与云化企业是每个企业的战略选择,而电力行业的数字化与云化转型的目标就是智能电网。
研究表明,电力大数据市场潜力巨大,预计到2019年全球市场空间将达到55亿美元,年复合增长率25%。美国电科院调查显示当前世界仅有不到5%的电力公司已完成大数据基础设施构建,预计5年后将提升至20%~30%。
电力大数据技术立足于电力系统业务服务需求,根植于云计算,以云计算技术为基础。未来,云平台是下一代企业IT构架必不可少的组成部分,是企业发展不可或缺的技术,企业IT云化是企业IT转型的关键。云计算能够整合智能电网系统内部计算处理和存储资源,提高电网处理和交互能力,成为电网强有力的技术支撑。
利用云计算等新技术,也可使信息流和业务流贯穿能源生产、传输、消费全过程,使生产者、消费者平等参与能源交易与创新,持续推动能源生产和消费革命。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30