京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python 字典(Dictionary)_ python字典操作_python dictionary
字典是另一种可变容器模型,且可存储任意类型对象。
字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中 ,格式如下所示:
d={key1:value1,key2:value2}
键必须是唯一的,但值则不必。
值可以取任何数据类型,但键必须是不可变的,如字符串,数字或元组。
一个简单的字典实例:
dict={'Alice':'2341','Beth':'9102','Cecil':'3258'}
也可如此创建字典:
dict1={'abc':456};dict2={'abc':123,98.6:37};
把相应的键放入熟悉的方括弧,如下实例:
#!/usr/bin/pythondict={'Name':'Zara','Age':7,'Class':'First'};print"dict['Name']: ",dict['Name'];print"dict['Age']: ",dict['Age'];
以上实例输出结果:
dict['Name']:Zaradict['Age']:7
如果用字典里没有的键访问数据,会输出错误如下:
#!/usr/bin/pythondict={'Name':'Zara','Age':7,'Class':'First'};print"dict['Alice']: ",dict['Alice'];
以上实例输出结果:
dict['Zara']:Traceback(most recent calllast):File"test.py",line4,in<module>print"dict['Alice']: ",dict['Alice'];KeyError:'Alice'
向字典添加新内容的方法是增加新的键/值对,修改或删除已有键/值对如下实例:
#!/usr/bin/pythondict={'Name':'Zara','Age':7,'Class':'First'};dict['Age']=8;# update existing entrydict['School']="DPS School";# Add new entryprint"dict['Age']: ",dict['Age'];print"dict['School']: ",dict['School'];
以上实例输出结果:
dict['Age']:8dict['School']:DPSSchool
能删单一的元素也能清空字典,清空只需一项操作。
显示删除一个字典用del命令,如下实例:
#!/usr/bin/python# -*- coding: UTF-8 -*-dict={'Name':'Zara','Age':7,'Class':'First'};deldict['Name'];# 删除键是'Name'的条目dict.clear();# 清空词典所有条目deldict;# 删除词典print"dict['Age']: ",dict['Age'];print"dict['School']: ",dict['School'];
但这会引发一个异常,因为用del后字典不再存在:
dict['Age']:Traceback(most recent calllast):File"test.py",line8,in<module>print"dict['Age']: ",dict['Age'];TypeError:'type'objectisunsubscriptable
注:del()方法后面也会讨论。
字典键的特性
字典值可以没有限制地取任何python对象,既可以是标准的对象,也可以是用户定义的,但键不行。
两个重要的点需要记住:
1)不允许同一个键出现两次。创建时如果同一个键被赋值两次,后一个值会被记住,如下实例:
#!/usr/bin/pythondict={'Name':'Zara','Age':7,'Name':'Manni'};print"dict['Name']: ",dict['Name'];
以上实例输出结果:
dict['Name']:Manni
2)键必须不可变,所以可以用数字,字符串或元组充当,所以用列表就不行,如下实例:
#!/usr/bin/pythondict={['Name']:'Zara','Age':7};print"dict['Name']: ",dict['Name'];
以上实例输出结果:
Traceback(most recent calllast):File"test.py",line3,in<module>dict={['Name']:'Zara','Age':7};TypeError:list objects are unhashable
Python字典包含了以下内置函数:
Python字典包含了以下内置方法:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23