京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python入门教程 超详细1小时学会Python
本文适合有经验的程序员尽快进入Python世界.特别地,如果你掌握Java和Javascript,不用1小时你就可以用Python快速流畅地写有用的Python程序.
为什么使用Python
假设我们有这么一项任务:简单测试局域网中的电脑是否连通.这些电脑的ip范围从192.168.0.101到192.168.0.200.
思路:用shell编程.(Linux通常是bash而Windows是批处理脚本).例如,在Windows上用ping ip 的命令依次测试各个机器并得到控制台输出.由于ping通的时候控制台文本通常是”Reply from … ” 而不通的时候文本是”time out … ” ,所以,在结果中进行字符串查找,即可知道该机器是否连通.
实现:Java代码如下:
这段代码运行得很好,问题是为了运行这段代码,你还需要做一些额外的工作.这些额外的工作包括:
编写一个类文件
编写一个main方法
将之编译成字节代码
由于字节代码不能直接运行,你需要再写个小小的bat或者bash脚本来运行.
当然,用C/C++同样能完成这项工作.但C/C++不是跨平台语言.在这个足够简单的例子中也许看不出C/C++和Java实现的区别,但在一些更为复杂的场景,比如要将连通与否的信息记录到网络数据库.由于Linux和Windows的网络接口实现方式不同,你不得不写两个函数的版本.用Java就没有这样的顾虑.
同样的工作用Python实现如下:
p.stdin.close()
p.wait()
print “execution result: %s”%p.stdout.read()
对比Java,Python的实现更为简洁,你编写的时间更快.你不需要写main函数,并且这个程序保存之后可以直接运行.另外,和Java一样,Python也是跨平台的.
有经验的C/Java程序员可能会争论说用C/Java写会比Python写得快.这个观点见仁见智.我的想法是当你同时掌握Java和Python之后,你会发现用Python写这类程序的速度会比Java快上许多.例如操作本地文件时你仅需要一行代码而不需要Java的许多流包装类.各种语言有其天然的适合的应用范围.用Python处理一些简短程序类似与操作系统的交互编程工作最省时省力.
足够简单的任务,例如一些shell编程.如果你喜欢用Python设计大型商业网站或者设计复杂的游戏,悉听尊便.
2 快速入门
安装完Python之后(我本机的版本是2.5.4),打开IDLE(Python GUI) , 该程序是Python语言解释器,你写的语句能够立即运行.我们写下一句著名的程序语句:
并按回车.你就能看到这句被K&R引入到程序世界的名言.
在解释器中选择”File”–“New Window” 或快捷键 Ctrl+N , 打开一个新的编辑器.写下如下语句:
保存为a.py文件.按F5,你就可以看到程序的运行结果了.这是Python的第二种运行方式.
找到你保存的a.py文件,双击.也可以看到程序结果.Python的程序能够直接运行,对比Java,这是一个优势.
我们换一种方式来问候世界.新建一个编辑器并写如下代码:
在你保存代码的时候,Python会提示你是否改变文件的字符集,结果如下:
# -*- coding: cp936 -*-
print “欢迎来到奥运中国!”
raw_input(“Press enter key to close this window”);
将该字符集改为我们更熟悉的形式:
# -*- coding: GBK -*-
print “欢迎来到奥运中国!” # 使用中文的例子
raw_input(“Press enter key to close this window”);
程序一样运行良好.
用微软附带的计算器来计数实在太麻烦了.打开Python解释器,直接进行计算:
可以如下打印出预定义输出格式的字符串:
字符串是怎么访问的?请看这个例子:
请注意ASCII和UNICODE字符串的区别:
类似Java里的List,这是一种方便易用的数据类型:
# Loops List
a = [‘cat’, ‘window’, ‘defenestrate’]
for x in a:
print x, len(x)
并且,介绍一个方便好用的函数:
for line in f:
print line
f.close()
每一个.py文件称为一个module,module之间可以互相导入.请参看以下例子:
module可以定义在包里面.Python定义包的方式稍微有点古怪,假设我们有一个parent文件夹,该文件夹有一个child子文件夹.child中有一个module a.py . 如何让Python知道这个文件层次结构?很简单,每个目录都放一个名为_init_.py 的文件.该文件内容可以为空.这个层次结构如下所示:
那么Python如何找到我们定义的module?在标准包sys中,path属性记录了Python的包路径.你可以将之打印出来:
import sys
print sys.path
通常我们可以将module的包路径放到环境变量PYTHONPATH中,该环境变量会自动添加到sys.path属性.另一种方便的方法是编程中直接指定我们的module路径到sys.path 中:
print “Import add_func from module a”
print “Result of 1 plus 2 is: ”
print add_func(1,2)
总结
你会发现这个教程相当的简单.许多Python特性在代码中以隐含方式提出,这些特性包括:Python不需要显式声明数据类型,关键字说明,字符串函数的解释等等.我认为一个熟练的程序员应该对这些概念相当了解,这样在你挤出宝贵的一小时阅读这篇短短的教程之后,你能够通过已有知识的迁移类比尽快熟悉Python,然后尽快能用它开始编程.
当然,1小时学会Python颇有哗众取宠之嫌.确切的说,编程语言包括语法和标准库.语法相当于武术招式,而标准库应用实践经验则类似于内功,需要长期锻炼.Python学习了Java的长处,提供了大量极方便易用的标准库供程序员”拿来主义”.(这也是Python成功的原因),在开篇我们看到了Python如何调用Windows cmd的例子,以后我会尽量写上各标准库的用法和一些应用技巧,让大家真正掌握Python.
但不管怎样,至少你现在会用Python代替繁琐的批处理写程序了.希望那些真的能在一小时内读完本文并开始使用Python的程序员会喜欢这篇小文章,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22