
深入浅出之数据分析师
今天飞机回程途中,遇到位北海道银行来中国出差的女生;途中聊起了各自的职业;一直聊到北京,全程让我很苦恼的是数据分析、数据分析师这些玩意如何很容易的介绍给她;
比如说她,是银行的一名普通职员,每天的任务是结算、结汇,从早到晚都在跟数据打交道;因为只用整理好的数据,所以自然不在乎也不注意,数据是如何来的;整个总结下来是,用数据的人不知道数据哪里来的,做数据的人不知道数据有什么用处;回忆了下,这还真是一个普遍的现象;
这个问题造成的后果就是,开数据会经常打架,A业务线给出的数据说xx 指标提升了,B业务给出的刚好是另外一种结论,指标在下降;等讨论完毕数据口径,会议结束,大家都感到无力。各人不禁感叹,这个会又白开了;脑袋一拍,目标就来,各种活动方案的目标基本是上拍脑袋,直接10-20倍,各自又忙活一阵子;数据快到我碗里来,昨天要的数据需求好了吗?明天老板开会,给几个数据吧;某某DLU指标掉了,看是不是数据有问题;今天push,明天Push,push ctr嗷嗷的高,同一拨用户群嗷嗷的高,用户投诉还不断;
既然业务上有这么多的问题,数据分析师是具体的解决什么样的问题呢?
Sample:
1.回答发生了什么?频率是多少?为什么会发生?
2.具体的业务问题是什么?
3.现在应该采取什么样的行动?
4.未来的趋势是什么?是否错过了机会?哪些问题(路子)是错误的、正确的,把错误的去掉,只留下正确的;
数据只有结合了业务才是有价值的,数据体现可以用四个字词概括,看数据、用数据、依赖数据、数据变现。稍微详细解释如下:
看数据, 能然让业务准确、及时、完整的看到数据, 落地是在报表、取数等;
用数据, 业务上通过数据做出决策 ,落地是异常监控/专题分析;
依赖数据,数据嵌入到业务的日常流程中,通过数据挖掘高价值信息推进业务,落地点在数据产品,数据挖掘产品;
数据变现,利用数据来赚钱了,落地点可在外部数据平台,数据产品上;
在这整个环节中”数据分析师“是做什么呢?我们从分析师的日常工作来分析看,临时需求、报表、数据分析与模型、数据产品,数据挖掘这几个角度来聊一下;
临时需求不必说了,就是解决业务的一次性,临时的数据需求;报表呢,是根据业务的需要,对于常规且定期查看与分析的数据,形成report;
数据分析与模型,与业务一起沟通,分析业务上的各种问题,提供一些业务上的建议与取舍,根据业务需要搞一些挖掘模型等;
数据产品,是通过可视化的方式解决一些结构化(固化)业务问题;把数据分析模型、分析思路与数据结合、面向定向业务提供分析产品;
数据挖掘,数据直接作用到业务上,比如作弊用户、标签推荐、用户行为的定向引导;
以上列举的这几类,前两类是实现看数据的,后三类是挖掘数据价值的;
数据分析师在工作时,在寻求答案的过程中,有一个很重要的衔接点,就是思考。
很多时候,分析师会受到固有问题的影响,如果不去变通,不懂得如何去提炼核心的话,就会产生思考的盲点,就注定问不出一些非常关键的问题;有时答案不重要,思考的角度才是很重要;比如在搞临时需求时,不要把临时需求当成一个取数的工作,学会梳理,学会管理;通过思考,可以发现很多业务上的问题; 了解业务,熟悉业务流程,总结与沉淀自己对业务的理解,知道行业的发展,才能提高自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15