
大数据时代三个“关键词”
“十三五”时期,实施国家大数据战略,就是把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。落实这一决策部署,要做的工作很多,其中,面向全社会普及大数据常识,是必不可少的环节。
关键词一,数据化:信息社会的重要标志。数据是一种客观存在,把这些客观存在的数据找出来,就是数据化的过程。如何有效获取数据?其重要手段就是利用大数据,这本身也是数据化的集中体现。大数据之所以重要,是因为它能做很多过去的小数据做不了的事情。数据化是信息社会的重要标志。人类经过农业社会、工业社会,现在已经进入了信息社会。信息社会一定是高度信息化的社会,也一定是高度数据化的社会。尤其是大数据技术的出现,使过去不可计量、存储、分析和共享的很多东西都被数据化了,这标志人类在寻求量化世界的道路上前进了一大步,人们认识世界的能力有了空前提高。现在我们有了大数据技术,就离发现事物的本质及其变化规律更近了。
关键词二,升维:数据化能力决定竞争能力。“升维”一词来自于科幻作家刘慈欣的小说《三体》。在这里借用这个词汇想表达的是,人类从农业社会、工业社会到信息社会,就是一个不断升维的过程。信息社会与工业社会之间的竞争,不是在一个维度,更不在一个层次。信息革命已经将人类带进了信息社会。所谓信息社会,就是建立在工业社会之上,全面实现信息化,并体现出以人为本、可持续和包容发展理念的新型社会。
关键词三,数据开放:大数据战略的突破口。实施国家大数据战略,关键在于推进数据资源开放共享。推进大数据战略,只需加快政府数据开放共享,就能催生一个重要的新增长点——新型的服务业。建立大数据的基础设施,可以让经济增长潜力迅速迸发出来,这是因为公司可以用这些数据创造价值,进而可能创造新的服务行业。需要说明的是,数据开放强调开放更多的基础数据,比如,交通大数据、通信大数据等。让基础数据流动起来,才能够真正释放其应有的价值,才能够通过这些数据去整合资源,创造出新的商业模式和新的业态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25