一、概述
朴素贝叶斯分类算法是基于概率论中的贝叶斯公式得到的,也是比较常用的一种算法,而朴素代表的是属性之间的独立性,这样联合概率可以转换成各概率分量的乘积。
二、算法思想
其实这个算法的思想就是贝叶斯公式,如果不是很了解也没什么关系,只要看点例子就明白了,但由于这里只想给大家提供一些实用代码,因此就不仔细说例子了,《机器学习实战》中的那个灰石头的例子就不错,另外,如果还感觉不是很清楚,推荐看一下《数据挖掘导论》中贝叶斯分类器部分。
三、实例算法
不说废话了,现在开始介绍朴素贝叶斯的matlab代码编写,这里我们的目标是利用朴素贝叶斯进行文档分类,即确定该文档是侮辱类还是非侮辱类,分别以1和0表示。
1. 创建测试数据
%% 建立测试数据
postingList = [{‘my dog has flea problems help please’};
{‘maybe not take him to dog park stupid’};
{‘my dalmation is so cute I love him’};
{‘stop posting stupid worthless garbage’};
{‘mr licks ate my steak how to stop him’};
{‘quit buying worthless dog food stupid’}];
classVec = [0, 1, 0, 1, 0, 1];
意义应该还是比较明确的,就是说2,4,6是带有侮辱性语句的文档
2. 创建无重复单词的列表
%% 创建无重复单词的列表
[m, n] = size(postingList);
VocabList = [];
for i = 1: m
tempstr = postingList{i};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
VocabList = [VocabList, str_split];
end
VocabList_unique = unique(VocabList);
可以看一下单词列表
>> VocabList_unique
VocabList_unique =
Columns 1 through 8
‘I’ ‘ate’ ‘buying’ ‘cute’ ‘dalmation’ ‘dog’ ‘flea’ ‘food’
Columns 9 through 16
‘garbage’ ‘has’ ‘help’ ‘him’ ‘how’ ‘is’ ‘licks’ ‘love’
Columns 17 through 24
‘maybe’ ‘mr’ ‘my’ ‘not’ ‘park’ ‘please’ ‘posting’ ‘problems’
Columns 25 through 32
‘quit’ ‘so’ ‘steak’ ‘stop’ ‘stupid’ ‘take’ ‘to’ ‘worthless’
3. 创建列表向量
由于单词不好进行表述,我们需要根据单词列表创建一个向量表示列表中的单词是否出现,出现用1表示,未出现用0表示。
setOfWords2Vec.m文件如下
function wordsVec = setOfWords2Vec(vocabList, inputSet)
vocabList = unique(vocabList);
inputSet = unique(inputSet);
Listnum = length(vocabList);
inputnum = length(inputSet);
wordsVec = zeros(1, Listnum);
for i = 1: inputnum
for j = 1: Listnum
if (strcmp(vocabList{j}, inputSet{i}))
wordsVec(j) = 1;
end
end
end
列表向量测试代码如下
%% 创建列表向量测试
tempstr = postingList{1};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
wordsVec = setOfWords2Vec(VocabList_unique, str_split);
测试结果如下
wordsVec =
Columns 1 through 14
0 0 0 0 0 1 1 0 0 1 1 0 0 0
Columns 15 through 28
0 0 0 0 1 0 0 1 0 1 0 0 0 0
Columns 29 through 32
0 0 0 0
上面的意思是测试postingList第一句’my dog has flea problems help please’
在单词表中的描述,对照上面的单词列表可以看到结果是正确的,比如wordsVec中的第六第七项为1,在单词表中表示的是dog 和 flea,这连个此时在上面那句话中出现的。
4. 贝叶斯分类函数编写
trainNB0.m文件
function [p0Vect, p1Vect, pAbusive] = trainNB0(trainMatrix, trainCategory)
[m, n] = size(trainMatrix);
pAbusive = sum(trainCategory) / m;
p1words = trainMatrix(find(trainCategory), :);
p0words = trainMatrix(find(1 – trainCategory), :);
p0wordscount = sum(p0words, 1) + 1; % 加1是为了防止出现0概率
p1wordscount = sum(p1words, 1) + 1;
p0Vect = log(p0wordscount ./ sum(p0wordscount));
p1Vect = log(p1wordscount ./ sum(p1wordscount));
这段代码还是要说明一下的
(1)注释位置那句对每个单词的出现初始化为1,就是说就算单词没出现,也将其计算为1,这是防止出现0概率,导致乘积为0。当然避免这个的方法有很多,每本书都不太一样,这里的+1采用的是Laplace平滑方法。
(2)最后算概率加了个log是减少其动态范围。
这两个都是为了实际应用对代码进行的修改,也就是说,就基本原理而言,不需要+1和增加log。
下面,我们对这个代码进行测试
%% 测试trainNB0
trainMatrix = [];
for i = 1: m
tempstr = postingList{i};
str_split = regexp(tempstr, ‘W*s+’, ‘split’);
wordsVec = setOfWords2Vec(VocabList_unique, str_split);
trainMatrix = [trainMatrix;wordsVec];
end
[p0V, p1V, pAb] = trainNB0(trainMatrix, classVec);
p0V代表0分类下,每个单词的出现概率,也就是先验概率(由于用了log,所以是负数,并且由于+1,故没有无穷大项目)
p0V =
Columns 1 through 8
-3.3322 -3.3322 -4.0254 -3.3322 -3.3322 -3.3322 -3.3322 -4.0254
Columns 9 through 16
-4.0254 -3.3322 -3.3322 -2.9267 -3.3322 -3.3322 -3.3322 -3.3322
Columns 17 through 24
-4.0254 -3.3322 -2.6391 -4.0254 -4.0254 -3.3322 -4.0254 -3.3322
Columns 25 through 32
-4.0254 -3.3322 -3.3322 -3.3322 -4.0254 -4.0254 -3.3322 -4.0254
p1V意义类似
p1V =
Columns 1 through 8
-3.9318 -3.9318 -3.2387 -3.9318 -3.9318 -2.8332 -3.9318 -3.2387
Columns 9 through 16
-3.2387 -3.9318 -3.9318 -3.2387 -3.9318 -3.9318 -3.9318 -3.9318
Columns 17 through 24
-3.2387 -3.9318 -3.9318 -3.2387 -3.2387 -3.9318 -3.2387 -3.9318
Columns 25 through 32
-3.2387 -3.9318 -3.9318 -3.2387 -2.5455 -3.2387 -3.2387 -2.8332
pAb代表的是分类为1的文件占所有文件的比例
pAb = 0.5
这个很明显,因为测试数据中有三个分类为1,并且一个有6项。
5. 分类测试
训练部分的代码已经写完了,下面我们的分类器就可以使用了,利用贝叶斯公式计算p(c | w)并比较大小可以确定分类c。
对于本例来说
p(w|0) = 待分类语句中每个单词在0类出现的概率的乘积
p(w|1) = 待分类语句中每个单词在1类出现的概率的乘积
p(0|w) = p(w|0)*p(0) / p(w)
p(1|w) = p(w|1)*p(1) / p(w)
如果p(0|w) > p(1|w)分类就是0,反之就是1
代码如下
classifyNB.m
function classRes = classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)
p1 = sum(vec2Classify .* p1Vec) + log(pClass1);
p0 = sum(vec2Classify .* p0Vec) + log(1 – pClass1);
if p1 > p0
classRes = 1;
else
classRes = 0;
end
说明:
由于前面的概率是以log形式表示的,所以乘积就变成了加法,还有就是p(w)不影响比较结果,因此未予计算。
测试代码如下
%% 进行分类测试
testEntry = ‘love my dalmation’;
str_split = regexp(testEntry, ‘W*s+’, ‘split’);
wordsVec1 = setOfWords2Vec(VocabList_unique, str_split);
classRes1 = classifyNB(wordsVec1, p0V, p1V, pAb);
testEntry = ‘stupid garbage’;
str_split = regexp(testEntry, ‘W*s+’, ‘split’);
wordsVec2 = setOfWords2Vec(VocabList_unique, str_split);
classRes2 = classifyNB(wordsVec2, p0V, p1V, pAb);
结果就是
classRes1 = 0
classRes2 = 1
也就是说,分类确定第二句带有侮辱性,其实从其中的stupid就可以看出
四、算法应用
前面就说过,这个算法应用很广,《实战》中给出了两个实例,一个是垃圾邮件分类,这个和我们这里做的文本分类非常类似,另外一个就是从个人广告中获取区域倾向。都是平时我们经常使用的功能,如果有兴趣可以自己编着试一下,很多还是挺有意思的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03