
大数据发展困难重重 未来之路何去何从
短短几年之内,大数据已经彻底改变了企业运营业务的方式——但截至目前,我们才刚刚初窥其门径。随着企业开始有意识到收集各类数据信息,其亦开始发现对这部分数据加以正确利用所能够带来的巨大潜力。
一些积极迎接变革的企业发现,他们的数据实际上可能正是其掌握的最大资产。除了数据本身之外,精明的企业还能够通过分析数据内容以了解并更好地服务于自身客户,甚至能够将其中一些关键性数据出售给合作伙伴及下游厂商以赚取额外利润。举例来说,优步与Lyft等服务就能够非常准确地把握与客户出行习惯相关的数据,并将其交付至Airbnb、VRBO等其它网站。与此同时,Fitbit及其它厂商提供的健身追踪器亦能够利用用户的健康活动数据实现巨大价值。即使是与医疗卫生业务毫不沾边的苹果公司,也能够以前所未有的洞察能力审视其原生健康应用数据。
在理论层面讲,如此庞大的数据宝库将能够为B2B及B2C企业带来集中且立足实践行为的洞察结论,进而以前所未有的方式开启新的机遇大门。然而,面对着一系列重大的技术性与财务性障碍,很多企业实际上并不清楚自己的下一步大数据战略该走向何处。其已经开始在数据挖掘领域试水,但尚未制定出一套能够顺利迈进的坚实战略思路。
为何存在挑战
截至目前,实现大数据技术承诺的最大障碍之一在于庞大的资金投入要求。从当下的情况来看,最为成功的项目往往需要耗资数百万美元,例如沃尔玛的专用数据创新实验室WalmartLabs。然而,这种项目只适用于那些世界上最为庞大的企业,其具备极为雄厚的财力与几乎无穷无尽的资源。很明显,这样的标准对于其它公司而言并不适用,或者说毫无实现的可能。
为何利用大数据技术会呈现出如此明确的资源密集型倾向?答案主要分为以下三个方面:
数据的输入速度极快,且数据来源数量亦急剧增加:移动、云应用、物联网——从用于追踪库存与设备的RF标签到一切接入网络的家用电器——当然,社交媒体亦是一大不容忽视的实时数据来源。
此类新型来源几乎全部在以非结构化或者半结构化格式交付数据,这使得传统的关系型数据库管理方案——即SQL以及几乎一切现代数据库系统的实现基础——毫无用武之地。除了收集及存储方面的挑战之外,合规性要求中的隐私与监管要求亦会带来新的复杂性层。不断发展的标准要求需要完整团队配合先进的技术、管理与维护手段方可实现。
随着在数据复杂度的日益提高,用于管理数据的具体技术方案亦变得更难于使用。Hadoop、Kafka、Hive、Drill、Storm、MongoDB以及Cassandra等开源工具外加一系列专有方案共同构成了独立且相互竞争的方案生态系统,只有具备深厚的技术操作知识方可将其真正应用在商业环境当中。事实上,此类人才资源非常稀缺,大多数非财富五百强企业都无力承担由此带来的高昂开支。
缺失之处何在
可以看到,绝大多数企业仅仅是在努力管理并挖掘自己的存储数据集,而很难实际利用数据中的信息建立自身竞争优势。在实践性、实用性及可行性方面,企业还无法充分运用现有工具发挥数据中的可观潜能。需要明确的是,目前我们并不缺乏良好的大数据工具,事实上我们缺乏的是真正具备效率与有效性的解决方案,这种能够解决数据孤岛及高度依赖性难题的手段既匮乏又难于维护。
为什么?因为截至目前,我们的重点一直放在整合应用程序并建立各类独立工具与平台之间的连接机制,缺少这种桥梁它们将根本无法协作。举例来说,我们需要想办法对接CROM与ERP,或者将销售工具与市场营销自动化机制相整合。
这种应用到应用型方案的问题在于,其完全忽略了数据本身——这意味着数据仍然可能以分裂化、孤立化或者碎片化形式存在。即使应用程序能够彼此连接,如果其各自拥有自己的数据存储形式,那么数据亦无法实现通用。这意味着我们将面对大量不完整或者重复的数据记录,即通常所谓的“脏”数据。任何分析方法都无法利用这样的数据素材提供可靠的结论——因为数据本身就不够可靠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15