京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年,塑造大数据行业的五大趋势
越来越复杂的大数据需求意味着创新的压力仍然很高。许多公司开始明白,客户的成功离不开数据方面的工作。不利用数据分析的公司会开始歇业,而成功的企业认识到发展的关键是数据精炼和预测分析。
本文通过Forrester的数据分析,总结了2017年大数据产业的几大趋势,与诸君分享。
Forrester的预测数据
Forrester在一份最新的报告中说,2020年之前,使用人工智能(AI),大数据和物联网(IOT)等技术开展新业务的企业,每年将比不使用这些技术的同行多赚1.2万亿美元。
在所有业务中,2017年人工智能的投资将同比增长300%以上。通过复杂系统的高级分析和机器学习技术得到智能认知,AI将为企业用户提供强大的、以前从未有过的洞察。Forrester表示,通过帮助缩小从洞察到行动的差距,AI能够在营销,电子商务,产品管理以及其他领域推动用户做出更快的业务决策。
人工智能、大数据和物联网技术的结合将使企业能够投资并成功使用它们,以克服数据访问障碍并挖掘有用的信息。在2017年,这些技术将增加业务的数据访问,扩展可分析的数据类型,并最终提高洞察的成熟度。大数据技术将趋于成熟,供应商也越来越多地将其与传统的分析平台集成,这将有助于将其获得的广泛信息纳入现有的分析流程中。使用单一架构来实现大数据与灵活可操作洞察的融合将变得更加广泛。
Forrester预计,可提供物联网洞察能力分析的第三方供应商在2017年将翻一翻。这将鼓励他们的客户投资更多的网络设备并挖掘分析其产生的数据。例如,Forrester发现,67%的电信决策者正在考虑或优先考虑在2017年开发物联网或M2M(机器/人与机器/人的交互)计划。
Forrester表示,增加对物联网的投资将带来新型的分析,这反过来也将带来新的业务洞察。目前,许多由边缘设备(如手机,可穿戴设备或汽车)产生的数据被直接丢弃。而实际上,这些数据可以被当作“不成熟的数据”并进行分析实践,这导致很多企业浪费了这些洞察的机会。
在2016年,不到50%的数据分析决策者采用了位置分析。Forrester预计,到2017年底,采用位置分析的企业将增长到三分之二以上。
2017年将出现的三大可喜现象
由于客户正是通过产品和服务来与所处的世界进行联系,因此,新型分析产生的新洞察将使企业更好地优化其客户体验。Forrester看到了很多令人欢欣鼓舞的迹象,越来越多的公司制订了用于消除客户信息壁垒的投资计划,这将使他们能够更好地协调和提高整个企业的洞察力。具体来说,Forrester表示在2017年将看到以下三个可喜现象:
1、首席数据官(CDO)职位将成为常态化
到2017年,首席数据官(CDO)职位将成为常态化,而在2016年,大概只有46%的公司设立了CDO职位。但是要真正成为一家洞察驱动型企业,企业必须由首席信息官(CIO)和首席营销官(CMO),甚至CEO负责部分数据业务,以便根据数据驱动洞察的结果迅速推动业务行动。
2、客户数据管理项目将增加75%
2016年,39%的企业首次实施了大数据计划,通过跨渠道跟踪,了解并熟知用户的使用习惯,洞察用户的深入需求,从而为用户提供定制化的服务。还有近三分之一的企业表示计划在未来十二个月内采用大数据技术提供解决方案。
3、采用洞察力驱动的企业将显著增加
Forrester预计,随着企业在2017年实现数字化转型,在企业范围内采用洞察力驱动的实践将显著增加。率先采用客户智能实践和战略的企业将成为业务转型的典范。长期来说,基于人工智能的服务和应用最终会改变大多数行业并重新分配劳动力。
2017年,塑造大数据行业的五大趋势
1.物联网(IoT)
公司日益期望从所有数据中获得价值,企业组织将不得不改动技术,以便与物联网数据衔接起来。这在数据治理、标准、健康保障、安全和供应链等方面带来了无数新的挑战和机遇。
物联网和大数据是同一枚硬币的两面,数十亿与互联网连接的“物件”将生产大量数据。然而,这本身不会引发另一场工业革命,不会改变日常的数字化生活,也不会提供拯救地球的预警系统。来自设备外部的数据才是企业让自己与众不同的方面,结合上下文来捕获和分析这种类型的数据为公司带来了新的发展前途。
2.深度学习
深度学习主要用于从大量未标记/未监督的数据当中学习,因而对于从大数据中提取有意义的标识和模式颇具吸引力。比如说,它可以用来识别许多不同类型的数据,比如视频中的形状、颜色和对象,或者甚至是图像中的猫,就像谷歌研制的一个神经网络在2012年所做的那样。因此,企业可能会看到更多的注意力投向半监督式或未监督式训练算法来处理进入的大量数据。
3.内存中分析
不像常规的商业智能(BI)软件对存储在服务器硬盘上的数据运行查询,内存中技术查询的是载入到内存中的信息,这可以通过减少或甚至消除磁盘输入/输出瓶颈来显著提升分析性能。就大数据而言,正是由于TB级系统和大规模并行处理,让内存中分析技术更令人关注。
在现阶段,大数据分析的核心其实是发现数据。要是没有毫秒级延迟,面对数百万次/数十亿次的迭代,运行迭代以查找数据点之间的关联就不会成为现实。在内存中处理的速度比磁盘上处理要快三个数量级。
4.云计算
混合云和公共云服务越来越受欢迎。大数据成功的关键是在弹性基础设施上运行(Hadoop)平台。我们会看到数据存储和分析趋于融合,带来新的更智能的存储系统,它们将经过优化,用于存储、管理和排序庞大的PB级数据集。展望未来,我们可以预计会看到基于云的大数据生态系统将继续迎来发展,不仅仅局限于“早期采用者”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27