京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代到来,我们来聊聊大数据到底是什么
“大数据”概念如今已经是频频出现在我们的视野里,从知名企业领导到国家高层领导,都在畅聊这一词汇。最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据作为当下如此热门的词汇,它有什么特点,有哪些应用价值,我们简单从以下几个方面来了解。
一、大数据的类型
大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。总结以下,大数据的类型大概分三类:
1.传统企业数据:包括CRM系统的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2.机器和传感器数据:包括呼叫记录,智能仪表,工业设备传感器,设备日志,交易数据等。
3.社交数据:包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
二、大数据的特点
大数据作为如此庞大的资产,由于它数据体量的巨大和种类的繁多,可以总结出以下几个特点。
1、数据体量巨大
在互联网移动互联网飞速发展的时代,从PC端到移动端再到云端每天都在产生着大量的数据,这些数据都潜藏着它的价值,数据资产的体量大这也是大数据的首要特点,所以才被称作“大数据”。
2、数据类别大和类型多样
大数据的数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
三、大数据的价值
大数据发展到如今一个高峰期,它的应用价值已经涉及到了各行各业,影响到我们日常生活的每个方面。可能你还不了解大数据,但你已经在享受大数据时代对生活带来的便利了。
对于消费者用户,他们对大数据的需求主要体现在信息能按需搜索,并能提供友好、可信的信息推荐,其次是提供高阶服务,例如智能信息的提供、用户体验更快捷等等。
大数据也不断被应用到政府日常管理和为民服务中,并成为推动政府政务公开、完善服务、依法行政的重要力量。从户籍制度改革,到不动产登记制度改革,再到征信体系建设等等都对数据库建设提出了更高的目标要求,而此时的数据库更是以大数据为基础的,可见,大数据已成为政府改革和转型的技术支撑杠杆。随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。
对于企业来说,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
大数据产业已经从当时概念的提出发展到如今渗透到各行各业,伴随着互联网移动互联网的发展,大数据产业已经迎来了一个小的高潮,但从长久来看,大数据产业还没有迎来爆发,不过,其发展速度如此之快,达到爆发也会在不久的明天。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23