京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师核心技术要点
我认为数据分析/数据科学/商业智能(或是其它类似名字)的职业,最核心的部分在于两点:业和术。
"业"更偏向于你的soft skills,你的理解能力,分析能力,沟通能力,mind-set。其中当然包括最重要的一个能力:
将复杂的商业问题转化为数学模型,并利用编程能力进行分析,预测和评估,再转化为合适的Business Plan,执行。
你可以看到,这是一个生态圈,其中并不是只是包含了其它答案所描述的数学模型,统计理论,也不只是包含用什么工具sas,r,excel。总结来说是一种完全设身处地去为商业模型思考的mind-set。这是我很多国内数据从业者身上很少看到的。很多同事更喜欢强调自己的统计模型多好,算法多牛,当然,别理解错,这些优化都是好事,但从一个Business function (我把analytic当作一种服务我们的商业目标的商业职能) 的角度来说,这只是一个从过程中的小部分。这可能是因为很多大型企业,比如银行,电商,IT,智能太细分导致,很少有人能真正退一步去思考我们做分析的意义何在,如何落地,能赚多少钱。
"术"更偏向于你的技术,包括你的数学,统计,编程,硬件的技术。这个技术对很多技术爱好者来说是数据分析最有意思的一部分,但对很多更喜欢business的朋友来说,很乏味。当然,没有好与坏,高级和低级的区别。术业有专攻就是这道理, 而抽象一点去说:
为了解决商业问题所需要的技术,能力。
看到这里你应该明白了,很多时候我们说的数据分析师实则是这个层面的。而再细分,这个技术其实分为三层:
1 统计理论,模型
2 数据库查询类编程SQL
3 底层数据存储技术hadoop, hive, spark, etc.
成为一个合格的数据科学家,你需要上面1,2的本事。有能力利用统计模型解决问题,也有能力通过编程将这些模型实现,并且自动化。这里很多人争论SAS,R,Python,SPSS,在我看来,无非只是工具,都是相同的,只要能用就好。而数理统计,则是要同时结合Q quant和P quant(具体请参照数说工作室,具体名字我忘了,一个微信号)。区别在于一个强调随机概率,一个强调根据历史数据的统计。所以,基本理论要知道,比如如何判别模型显著,如何优化模型。基本模型也要会,回归,Clustering, sequence analysis等等。只有精通这些模型,才能知道怎么从统计角度去解决商业文体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29