
大数据时代下,数据分析如何实现“快”与“准”
大数据时代下,人们茶思饭后的话题离不开“大数据”三个字,如今,这一话题已经白热化,并对企业管理带来的深远影响,让许多企业管理者更加关注数据带来的业务价值,纷纷想要通过数据分析工具来挖掘数据价值,从而更好地指导企业的发展。然而,在数据挖掘、分析的过程中,一些弊端渐渐流露出来,海量的数据分析起来要耗费非常大的精力,还常常出现错误,得不到想要的分析结果。
企业由于纷纷想分折其数据, 会发现其数据问题源头在于业务系统分散导致数据分散, 不一致及不能关联以及非端到端导致人工输入错误或个人的原因不输入数据。对此,当越来越多的企业意识到上述问题时,他们会更加倾向于选择一体化及端到端的业务系统。
先进BI技术+一体化,数据分析又快又准
针对企业数据分析存在的问题,一体化管理软件8thManage从BI技术以及数据源两个方面入手,为企业进行海量数据分析提供可行性非常高的解决方案,成为企业应对大数据挑战的法宝。
嵌入先进BI技术,数据挖掘一步到位。面对瞬息万变的市场环境,企业必须对海量的数据进行快速的分析,以最快的速度为企业管理者提供有价值的信息,这对数据分析速度有严格的要求。8thManage的商业智能技术为企业提供快捷数据仓库,与传统数据仓库包含数据库系统开发、数据清理、数据集成及数据挖掘的整个过程不同,该数据仓库简化数据挖掘的步骤,数据挖掘一步到位,不仅最小化数据集成的需要,还提供行业特定的预先集成解决方案,提高数据分析效率,帮助企业更好地应对大数据“大”的挑战。
数据源统一关联,数据分析精准且实用。“事实上,对于大数据分析来说,8thManage最大的优势便是数据源,从产生开始便是统一关联的。”罗叶明先生继续介绍道,基于“一个设计,一个系统”的理念,8thManage在设计之初便是将ERP、CRM、PM、PMO等功能模块建立在一个统一的平台上,采用统一的数据库来保持数据结构的全面关联与实时同步,克服了传统应用软件在数据实时性、一致性上的不足。这样一来,企业在开展数据分析时获得的数据源便是实时精准的,避免脏数据的出现,提升数据分析的准确性。同时,8thManage对数据的分析是非常简便的,其大部分的多维度BI分析只是基本查询与高级查询,而查询是业务用户都熟悉的操作,即使没有IT人员及技术的支持,商业用户也能做大量的数据挖掘工作。
大数据时代下,如何实现数据分析的又快又准,是企业面临的重要课题,随着海量数据需要先进的信息化手段进行分析,这让企业的IT管理面临更加严峻的局势。基于一体化及端到端管理,借助先进的商业智能技术,8thManage最小化数据出错的可能性,提升数据分析的准确率及速度,让大数据分析变得又快又准,且易用,帮助企业更好地实现商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04