
做数据分析时,你的方法论是什么
当你完成一份数据分析报告时,不知领导是否有问过你,“你的分析方法论是什么?”。如果分析方法论不正确或不合理,那分析结果参考价值几何呢?
困惑
相信很多人在做数据分析时,会经常遇到这几个问题:不知从哪方面入手开展分析;分析的内容和指标常常被质疑是否合理、完整,自己也说不出个所以然来。当然我也一样,处在数据分析的学习阶段,对这些问题常常会感到困惑。
这就是为什么强调数据分析方法论的原因。当方法论结合了实际业务,才能尽量确保数据分析维度的完整性和结果的有效性。
数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。
数据分析的一般步骤:
解惑
数据分析的目的越明确,分析越有价值。明确目的后,需要梳理思路,搭建分析框架,把分析目的分解成若干个不同的分析要点,然后针对每个分析要点确定分析方法和具体分析指标;最后,确保分析框架的体系化(体系化,即先分析什么,后分析什么,使得各个分析点之间具有逻辑联系),使分析结果具有说服力。
那么,如何保证分析框架的体系化呢?
以营销、管理等理论为指导,结合实际业务情况,搭建分析框架,这样才能尽量确保数据分析维度的完整性,结果的有效性及正确性。
营销方面的理论模型有:4P、用户使用行为、STP理论、SWOT等。
管理方面的理论模型有:PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等。
这里主要说明:PEST、5W2H、逻辑树、4P、用户使用行为这五个比较经典实用的理论,了解如何在搭建数据分析框架时应用它们作指导。
(1)PEST:主要用于行业分析
PEST,即政治(Political)、经济(Economic)、社会(Social)和技术(Technological)
P:构成政治环境的关键指标有,政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、国防开支水平政府补贴水平、民众对政治的参与度等。
E:构成经济环境的关键指标有,GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。
S:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。
T:构成技术环境的关键指标有:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。
eg:仅作举例,不代表只考虑这几点因素
(2)5W2H:应用相对广泛,可用于用户行为分析、业务问题专题分析、营销活动等
5W2H,即何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何做(How)、何价(How much)
该方法广泛应用于企业营销、管理活动,对于决策和执行性的活动措施非常有帮助,也有助于弥补考虑问题的疏漏。
eg:仅作举例,不代表只考虑这几点因素
(3)逻辑树:可用于业务问题专题分析
逻辑树,又称问题树、演绎树或分解树等。
它是将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。
逻辑树的作用主要是帮我们理清自己的思路,避免进行重复和无关的思考。
逻辑树的使用必须遵循以下三个原则。
要素化:把相同问题总结归纳成要素。
框架化:将各个要素组织成框架,遵守不重不漏的原则。
关联化:框架内的各要素保持必要的相互关系,简单而不孤立。
缺点:涉及的相关问题可能有遗漏,虽然可以用头脑风暴把涉及的问题总结归纳出来,但还是难以避免存在考虑不周全的地方。所以在使用逻辑树的时候,尽量把涉及的问题或要素考虑周全。
eg:仅作举例,不代表只考虑这几点因素
(4)4P:主要用于公司整体经营情况分析
4P,即产品(Product)、价格(Price)、渠道(Place)、促销(Promotion)
eg:仅作举例,不代表只考虑这几点因素
(5)用户使用行为:用途较为单一,就是用于用户行为的研究分析
用户使用行为,即用户为获取、使用物品或服务所采取的各种行动。
用户对产品首先需要有一个认知、熟悉的过程,然后试用,再决定是否继续消费使用,最后成为忠诚用户。
用户使用行为的完整过程:
可以利用用户使用行为理论,梳理产品分析的各关键指标之间的逻辑关系,构建符合公司实际业务的产品分析指标体系。
eg:仅作举例,不代表只考虑这几点因素
这些方法论并非只能单独使用,可以根据具体情况选择合适的方法论嵌套使用。
最后
明确数据分析方法论的主要作用:
理顺分析思路,确保数据分析结构体系化。
把问题分解成相关联的部分,并显示它们之间的关系。
为后续数据分析的开展指引方向。
确保分析结果的有效性及正确性。
明确数据分析方法论和数据分析法的区别:
数据分析方法论主要是从宏观角度指导如何进行数据分析,它就像是一个数据分析的前期规划,指导着后期数据分析工作的开展。
而数据分析法则指具体的分析方法,比如对比分析、交叉分析、相关分析、回归分析等。数据分析法主要从微观角度指导如何进行数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04