京公网安备 11010802034615号
经营许可证编号:京B2-20210330
常用的数据分析方法论和数据分析法
今天我们讲讲几个常用的数据分析方法和分析方法思路,如果分析思路不明确或者错误那么后续的数据分析工作也就无法开展了。
不知道有没有人和我刚开始一样,分不清什么是数据分析方法论,什么是数据分析法,那么我们先说说它们的区别。
数据分析方法论主要用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如主要从哪几个方面开展数据分析?各方面包含什么内容和指标?从宏观角度知道如何进行数据分析,就好比做一件事情前需要做的规划。而数据分析方法是指具体的分析方法,例如常见的对比分析,交叉分析,相关分析等数据分析法。
数据分析方法论主要有以下几个作用:
理顺分析思路,确保数据分析节后细化。
把问题分解成相关联部分,并显示它们之间的关系。
为后续数据分析的开展指引方向。
确保分析结果的有效性及正确性。
一般几个重要的理由营销方面的理论模型有4P,用户使用行为,STP理论,SWOT等,管理方面的理论模型有PEST,5W2H,时间管理,生命周期,逻辑树,金字塔,SMART原则等,以下我们就详细讲几个经典实用的。
PEST分析法:
PEST分析法用于对宏观环境的分析,宏观环境也叫一般环境,指影响一切行业和企业的各种宏观力量。由于不同行业和企业有其自身特点和经营需要,分析的具体内容也会有差异,但一般都应对政治,经济,技术和社会这四大类影响企业的主要外部环境因素进行分析。
以PEST对中国互联网行业进行分析案例:
5W2H分析法:
5W2H是以五个W开头的单词和两个H开头的单词进行提问,从回答中发现解决问题的线索。
即:
这个方法简单,方便,容易理解和使用,富有启发意义,广泛用于企业营销,管理活动,对于决策和执行性的活动措施也非常有帮助。对于其他是事情也可以从这七个方面去思考。
例:
逻辑树分析法:
逻辑树又称问题树,演绎树或分解树等,也是分析法中最常用的方法,逻辑树的作用主要是帮助你理清自己的思路,避免进行重复和无关的思考,能够保证解决问题的过程完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确的把责任落实到个人。(数据分析培训)
逻辑树的使用需要遵循三个原则:
要素化:把相同的问题总结归纳成要素。
框架化:将各个要素组织成框架,遵守不重不漏的原则。
关联化:框架内的各要素保持必要的相互关系,简单而不孤立。
例:
4P营销理论:
4P营销主要包括:产品(product),价格(price),渠道(place),促销(promotion)
例:
以上只是几个常用的方法,还有很多需要你们在实际工作中去运用,但是方法不在掌握多少,会用才是硬道理,切忌生搬硬套。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16